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Abstract

A new method is proposed for detecting fraudulent whiplash claims based on
measurements of movement control of the neck. The method is noninvasive
and inexpensive. The subjects track a slowly moving object on a computer
screen with their head. The deviation between the measured and actual
trajectory is quantified and used as input to an ensemble of support vector
machine classifiers. The ensemble was trained on a group of 34 subjects
with chronic whiplash disorder together with a group of 31 healthy subjects
instructed to feign whiplash injury. The sensitivity of the proposed method
was 86%, the specificity 84% and the area under curve (AUC) was 0.86. This
suggests that the method can be of practical use for evaluating the validity
of whiplash claims.

Keywords: Whiplash, Insurance fraud, Time series, Classification, Support
vector machines

1. Introduction

The term whiplash associated disorders (WAD) refers to a variety of
clinical manifestations due to bony or soft tissue neck injuries following an
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acceleration-deceleration energy transfer such as a motor vehicle accident [1].
The diagnosis of WAD is an archetype of the diagnosis of a soft tissue injury
where the diagnosis is mainly based on the exclusion of visible trauma on
standard imaging modalities [2]. Recent figures suggest that more than 300
persons (per 100 000 in the population) with neck pain after traffic collisions
are seen in emergency departments every year [3, 4]. Although the majority
of those diagnosed with WAD recover within the first three months after in-
jury [5], a significant proportion, 20-40% remain symptomatic at six months
and develop chronic WAD [5, 6].

Patients with WAD, who are still symptomatic despite numerous physical
treatments and medical care, take the natural course of action of seeking com-
pensation for their chronic symptoms. Not surprisingly, patients with chronic
WAD, have a poor reputation due to these compensation claims, especially
as no demonstrable patho-anatomical signs can usually be detected to justify
them. Some, who have not been hurt, may even exploit the inability of the
health care system to detect a justifiable cause for the complaints to make
a compensation claim. The present situation is therefore very unsatisfac-
tory for genuine patients, the health care system and the third party payers.
Insurance claims for personal injury after whiplash injury cost the United
Kingdom more than £3 billion per year [7] and data from the United States
reveal costs reaching $29 billion per year [8, 9]. Fraudulent whiplash claims
based on staged accidents are estimated to cost the UK insurance industry
between £75 - £110 million every year, representing 5% of all whiplash claims
[10]. More accurate diagnosis could therefore help insurers fight fraudulent
claims.

While identification of the precise nature of the physical impairment in
patients with WAD has proven to be difficult, some advances have been made
in recent years in the development of objective assessment methods. These
include tests that address sensorimotor control deficits like disturbed head-
neck awareness [11], disturbed neck movement control [12] and oculomotor
disturbances [13, 14]. A recent study [15] used the total cervical range of
motion to discriminate between whiplash and healthy subjects with good re-
sults. Grip et al. [16] report promising results on classifying WAD subjects
from controls using three-dimensional neck movement data in conjunction
with a neural network classifier. Dvir et al. [17] studied maximal versus
feigned active cervical motion in healthy subjects and were able to differenti-
ate effectively between the two levels of effort using the coefficient of variation
of the range of motion.
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”The Fly” test [12] is a computerized method to measure the accuracy of
head and neck movements. It measures the ability of the patient to correct
cervical spine movements on a moment-to-moment basis. This is an impor-
tant proprioceptive function for the regulation of movements, i.e. detection
and correction of errors, via feedback and reflex mechanisms, when perform-
ing active movements. This method has demonstrated impaired movement
control in patients with a history of whiplash injury when compared to
healthy controls [12]. The prior Fly test has recently been reformed both
as a measurement method (test) and a treatment method. This was accom-
plished by creating incremental difficult classes of unpredictable movement
tasks according to specific criteria (see section 2.2).

The new classification method proposed here for detecting fraudulent
whiplash claims is noninvasive, inexpensive and risk free. It combines a
revised version of the Fly test for cervicocephalic kinesthetic sensibility [12],
with a state of the art pattern recognition algorithm. A set of features
is extracted from the neck movement measurements and used as input to
a statistical pattern classifier. The features include the deviation of the
measured trajectory from the actual trajectory which was found useful for
discriminating between asymptomatic and chronic whiplash subjects in [12].
Another feature is the rate of change of acceleration (jerk) which was found to
be significantly higher in a group patients with insidious neck pain and WAD
when compared to healthy subjects [18]. The features also include entropy
measures which are frequently employed in the analysis of physiological time
series. To the best of our knowledge, this is the first time machine learning has
been applied to the problem of differentiating between subjects with genuine
WAD symptoms and subjects who try to fake results for personal gain. The
initial hypothesis was that neck movement in asymptomatic subjects faking
neck injury was significantly different than in subjects with chronic WAD
and that this difference could be reliably detected by a combination of the
Fly test and a statistical pattern classifier.

2. Material and Methods

2.1. Subjects

Sixty-five individuals participated in the study, divided into two study
groups. A group of 31 healthy individuals (16 women and 15 men) ages 16-
67 years (mean 37.9, SD 16.7) was recruited from staff and students of various
local businesses (including insurance companies) and schools. A group of 34
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patients (28 women and 6 men) with chronic WAD, after being injured in
motor vehicle accidents, ages 21-56 years (mean 41.3, SD 9.2) was recruited
through contacts with physical therapists in Reykjavik. Samples of conve-
nience were used in both groups. The asymptomatic group had no history
of musculoskeletal pain or injury in the neck, upper back or upper arms. To
be included in the WAD group, the subjects should have a history of one or
more whiplash injuries and have had symptoms for more than 6 months and
less than 15 years, from the neck, cervicalgi, cervicogenic headache (above
4 on the visual analog scale) and restricted movement in the upper cervical
spine. Individuals were excluded if their symptoms corresponded to grades
III or IV, as classified by the Quebec Task Force on Whiplash-Associated Dis-
orders [1] or if they had rheumatic or neurological disorders of any kind. All
participants completed questionnaires recording descriptive data and general
health. The WAD group completed additionally the Whiplash Disability
Questionnaire [19], the Tampa Scale of Kinesiophobia [20] and the SF-36
Health Survey [21]. Ethical clearance for the study was obtained from the
National Bioethics Committee and informed consent was obtained from all
participants.

2.2. Measurements

The method for measuring movement control in the neck is briefly sum-
marized here, the reader is referred to [12] for details. An electromagnetic
tracking system, 3space Fastrak system (Polhemus Inc, Colchester, Vermont),
with a sampling rate of 120 Hz, was used in this study. This system has been
used to assess position sense in the neck [22, 23] and the range of motion
in the neck [24] and shoulder [25]. The system computes the position and
orientation of two sensors at discrete time intervals as they move through
space. One sensor is placed on the forehead and the other at the back of the
head. The horizontal and vertical differences between the sensor positions
are used to determine the position of a cursor on a computer screen situated
1 m in front of the subject. This cursor indicates movements of the head.
Another cursor on the screen (the Fly) traces out predetermined movement
tasks. The subjects are asked to use the cursor, derived from the sensors on
the head, to follow the cursor of the Fly as accurately as possible. Only the
cursors are visible, not their trajectories, which makes prediction of move-
ment difficult. A recently developed software package is used to carry out
the recordings.
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Three movement tasks of varying difficulty (easy, medium and difficult)
were used in the study. The difficulty level was determined by the geometry
of the movement tasks (figure 1), the velocity of the target (the Fly) and
the length of the trajectories. The movement tasks differ from the ones
described in [12] which all had similar geometry and trajectory lengths, and
were therefore all of similar difficulty level.

Figure 1: The three tasks: Easy (left), medium (middle) and difficult (right). The gray
curve is the Fly trajectory and the black curve is a trajectory recorded from an asymp-
tomatic subject.

2.3. Procedure

All the subjects were measured during the day. The participants were
seated on a wooden chair and instructed to assume a comfortable position
facing forward. The examiner explained the intention and nature of the
task required of the participants. To familiarize them with the task, all
the participants executed the same movement task twice. This task was
different from the ones used during the measurements and was only used
for instructional purposes. The participants were required to repeat each of
the three movement tasks in figure 1 three times, with a 10 seconds interval
between each task. The test was performed in random order across tasks
and trials. The duration of the easy, medium and difficult tasks was 25, 40
and 50 seconds respectively. The participants had no knowledge about the
different difficulty grades of the movement tasks beforehand. After a break
of 10 minutes, the asymptomatic subjects were asked to feign a neck disorder
using the protocol from [17] which involves reading the following paragraph to
the subjects: ”Imagine that one year ago you were involved in a motor vehicle
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collision. As a result you have suffered from various symptoms, like headache

and neck pain. Today, although symptom free, you claim damages for cervical

impairment after this car collision. In the next set of measurements, try to

convince me that your claim is well founded and that you still suffer from

those symptoms.” The measurements were then repeated in the same way as
before.

As a result, two sets of measurements exist for the asymptomatic group,
sincere and feigned. In the analysis below, the feigned performance of the
asymptomatic group together with the measurements from the whiplash
group are used for classification.

2.4. Data analysis

The analysis was carried out using the Matlab program (Mathworks, Nat-
ick, MA, USA) after exporting the raw data from the recording software.
Each trial results in a bi-variate time series, P (t), containing the on-screen
x and y coordinates derived from the Fastrak system. The corresponding
actual (Fly) trajectory is denoted by Q(t).

In the following, the time series measurements are replaced by features,
succinct vectorial representations of the data. Since the recording protocol
used has only recently been developed, the choice of features is not obvious.
Several features which were thought to be relevant were extracted from the
data. A scatter plot matrix of the features was used to determine which
features to use in the classification.

2.4.1. Feature extraction

The feature CDEV represents the deviation of the measured trajectory
from the actual trajectory. It is defined as the average distance between
P (t) and Q(t) over the whole time series. Closely related features are XDEV
which measures the average horizontal deviation between P (t) and Q(t) and
YDEV which measures the corresponding vertical deviation. For all three
features, the largest 10% of the values are discarded prior to averaging in
order to prevent minor ”mishaps” having a large effect.

The INSIDE feature is another measure of closeness between the mea-
sured and actual trajectories. It is defined as the number of points which
satisfy ||P (t) − Q(t)||2 < R divided by the length of the series. A separate
value of R was used for each task, R = 3 for the easy task, R = 3.3 for the
medium difficult task and R = 3.75 for the difficult task. The values were
taken from a previous study (unpublished.)
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The fifth feature is CURVLEN, the length of the observed trajectory,
normalized by the length of the actual trajectory, the lengths being com-
puted by summing up the distances between consecutive points of the time
series. A feature JERK was computed using the procedure from [26]. It
is obtained by differentiating the time series of P (t) three times, employ-
ing a convolution-based boxcar smoothing filter at each step to reduce noise
(width 100 samples.) The resulting instantaneous acceleration values are
then squared and averaged to obtain a single value. As a byproduct of this
computation, the feature MEANVEL, computed as the mean velocity of the
user controlled cursor, is obtained. The final two features considered here are
based on the spectral entropy of amplitude deviations. The entropy of the
x-axis deviations is defined as Hx = −

∑

px log px where px is the normal-
ized power spectrum of the series Px(t) − Qx(t). The entropy of the vertical
deviations, Hy, is defined analogously. The spectral entropy quantifies how
sinusoidal the signal is. A pure sinusoid has entropy zero and uncorrelated
white noise has entropy one. The corresponding features are referred to as
HX and HY.

2.4.2. Support vector machine ensemble

The support vector machine has over the last decade become a popular
approach to pattern classification since it can deliver state-of-the-art perfor-
mance on a wide variety of real-world classification problems.

Let S = {(x1, y1), . . . , (xm, ym)} denote a set with m labeled examples,
where xi ∈ R

d represent the training examples and yi ∈ {−1, 1} are the
labels. In the case that each subject is represented by a single trial from
a single task, the training set consists of m = 65 examples, i.e. the total
number of participants in the study. The feature vector has d = 9 elements
corresponding to the nine different features described in section 2.4.1 and the
label −1 denotes the whiplash group and +1 the feign group.

SVMs seek a maximum margin hyperplane in feature space which sepa-
rates the two classes so that the distance from the hyperplane to the closest
examples, known as support vectors, is maximal. Maximizing the margin can
be related to optimizing bounds on the expected misclassification rate of the
classifier [27].

The 1-norm soft margin SVM is obtained by solving the following quadratic
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optimization problem over w, ξ and b

min
w,ξ,b

1

2
wTw + C

∑m

i=1 ξi

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi

ξi ≥ 0, i = 1, . . . , m
(1)

where w is a d-dimensional vector, ξ is an m-dimensional vector and b is a
scalar. The parameter C controls the trade-off between maximizing the mar-
gin and allowing misclassified training examples. Classification of example x

is performed by computing

f(x) = sgn
(

wTφ(x) + b
)

(2)

One of the most important properties of SVMs is that the mapping φ is not
explicitly needed, only the inner product (kernel) k(x, z) = 〈x, z〉 between
vectors φ(x) and φ(z) is needed. A commonly used kernel is the radial basis
function which will be used in the following

κ(x, z) = exp(−γ||x − z||2) (3)

where γ > 0 is a user-specified scale parameter and φ(x) is a nonlinear
mapping. Solving the dual of the above optimization problem and rewrit-
ing the classification rule in terms of the dual solution avoids the need for
computing vectors φ(x) explicitly, only the kernel values are required. The
LIBSVM package [28] was used to train the SVM classifiers and perform the
subsequent classification. Each feature was linearly scaled into the interval
[0, 1] by subtracting the minimum of the feature values over all the training
examples and dividing by the range of feature values over all the examples.
The test data was scaled accordingly, using the min and max values of the
training data.

Three trials are carried out for each of the three different tasks, resulting
in 9 measurements per subject available during training and classification.

A single SVM classifier can be trained using data from all the trials by
combining feature values for all three tasks and three trials in a single feature
vector. This approach has at least two drawbacks. First, it is quite common
that even healthy subjects perform badly on some of the trials, e.g. due to
lapses in attention, and the corresponding elements of the feature vector will
have values that are ”off the charts”. This problem can be mitigated some-
what by averaging feature values over trials. Secondly, multiple trials run the
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risk of some of them being unusable or even missing. Since SVMs are sensi-
tive to outliers [29] and do not handle missing values properly an alternative
approach based on an ensemble of classifiers was used instead. Three SVM
classifiers were trained, each specializing in a single task. Each trial forms a
separate training example and each subject is therefore represented by three
examples (or less in case of missing data) in the training set for a given task.
Classification of (new) subjects is performed by sending each available trial
through the corresponding SVM (depending on the task) which subsequently
casts a vote for either the whiplash or the feign class. The final classifica-
tion is based on majority vote, with ties broken arbitrarily. The resulting
ensemble is relatively robust towards missing data and outliers, both in the
training stage and later during classification.

2.4.3. Model selection and validation

A nested cross-validation procedure was used to assess the performance of
the classifier ensemble and to carry out model selection (tuning of parameters
C and γ) for individual classifiers. The outer cross-validation loop (ten folds)
was used to estimate a ROC curve for the classifier and was done on a per
subject basis to prevent the same subject being simultaneously included in
both the training and test sets. For each training set partition, a separate
cross-validation procedure was used to select the best model by performing
a grid search over a range of values of the C and γ parameters and selecting
the pair giving the lowest cross-validation error. The procedure is further
illustrated in figure 2.

The ensemble has three pairs of (C, γ) parameters, i.e. six hyper-parameters
in all. The amount of training data available for tuning the hyper-parameters
is approximately 9/10 · 65 · 3 · 3 ≈ 527 examples which corresponds to around
88 examples per parameter.

3. Results

3.1. Feature selection

Figures 3(a)-3(d) show selected 2-D projections of the feature matrix.
Each subject is represented by three dots, where a single dot corresponds to
one trial. The squares and diamonds illustrate how the results may vary be-
tween trials in two arbitrarily chosen subjects, one from the whiplash group
(squares) and the other from the feign group (diamonds.) From figure 3(a)
it can be seen that values of the INSIDE feature are considerably larger
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Figure 2: The nested cross-validation procedure used to obtain an estimate of the per-
formance measure P of the ensemble classifier. Three-fold cross-validation is used in this
example while 10-fold cross-validation is used in the study. The data set is split into three
equally sized parts. A test partition Ti is set aside while the remaining data Si is used for
training. Each training set Si is then partitioned further into three smaller training sets
Si,j and three test set Ti,j partitions. A search of ”optimal” values of SVM parameters
C, γ is carried out by training ensembles on each sub-partition Si,j and evaluating their
accuracy (misclassification rate) on Ti,j. The (C, γ) pair with the highest accuracy is then
used to train an ensemble on the whole Si data set. A performance measure Pi is obtained
by classifying the test set Ti. The individual performance measures Pi are finally combined
in a single value P which is then reported.

for the whiplash group indicating that the feign group is exaggerating neck
movement. This is further confirmed by the feature MEANVEL, since its
values for the whiplash group lie in a narrow range compared to the feign
group. This behavior is also reflected in the CDEV feature in figure 3(b)
which shows that the feign group deviates more from the actual trajectory.
The same figure also shows that the entropy of the amplitude deviations is
lower for the feign group, suggesting more regularity in the tracking pro-
cess. Figure 3(c) reveals that both the jerk-index and curve length features
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have limited ability to discriminate the two groups, at least when considered
alone. The failure of the jerk index to provide useful information may be
due to the fact, that even the simplest movement task is an order of mag-
nitude more complex than the type of movement considered in [18]. It is
possible that repeated differentiation amplifies noise to such an extent that
any useful signal present gets lost. Finally, figure 3(d) shows that CDEV
and INSIDE are strongly correlated. Similar examination of HX versus HY
revealed significant correlation. The correlation between all pairs of features
is summarized in figure 4. From their respective definitions it is obvious that
CDEV is also strongly correlated with both XDEV and YDEV. Based on
the above considerations, the set of candidate features was narrowed down
to CDEV, HY and MEANVEL. Only two features, CDEV and HY, were
included in the final feature set since the inclusion of MEANVEL was found
to hurt performance.

3.2. A single SVM versus an ensemble

The ensemble classifier was first compared to a single SVM classifier where
the feature values corresponding to all the tasks and trials for CDEV and
Hy were combined in a single vector (m = 65 and d = 3 · 3 · 2 = 18). This
comparison helps establish whether the added complexity of the ensemble is
justified. Since the data set is relatively small, the performance estimates
obtained with cross-validation are affected by the order of the training ex-
amples. The cross-validation procedure was therefore repeated 100 times,
randomly shuffling the training examples each time. Figure 5 shows the
(cross-validated) estimate of the misclassification count. Using trial averages
instead (d = 3 · 2 = 6) gave almost identical results. Keeping in mind that
the simulations are not independent, the ensemble appears to be more robust
since it seldom misclassifies more than 10 examples. Averaging the results,
the misclassification rate for a single classifier was estimated as 0.17 ± 0.02
and 0.15 ± 0.01 for the ensemble classifier. The fraction of support vectors
for the ensemble classifier was 0.57 for the easy task, 0.44 for the medium
difficult task and 0.46 for the difficult task (on average).

The SVM ensemble was also compared to an identical ensemble classifier
which employed linear discriminant classifiers (LDA) instead of SVMs1. The
purpose of this experiment was to investigate whether the complexity of a

1The LDAs were obtained with Matlab’s classify function.
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Figure 3: Scatter plots for selected features (easy task, three trials per subject). Whiplash
(black dots) and feign (open circles). The squares identify a single whiplash subject and
the diamonds identify a single feign subject. Both subjects are arbitrarily chosen.
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Figure 4: Linear correlation between all feature-pairs (absolute values.) White color de-
notes strong correlation and black indicates no correlation. The plot was obtained by
aggregating feature values from both groups for the difficult task.

nonlinear SVM was justified. The misclassification rate for the LDA ensemble
was 0.21 with a sensitivity of 74% and a specificity of 83%. Similar results
were obtained with an ensemble of linear SVMs (maximum margin LDAs.)

3.3. Confidence measures

The proposed method does not provide a measure of confidence with the
classification results. When the voting is done over multiple tasks and trials,
the vote count (or their ratio) can provide such a measure. If, say, ”feign”
receives four votes and ”whiplash” five, the clinician may simply declare the
test as inconclusive. When the voting is done over few individual tasks and
trials, e.g. because of missing data, this strategy is not very useful. An
alternative is to use an SVM variant with posterior probability estimates
and use the average of the probabilities for a single class as a measure of
confidence. A classification is obtained by applying a threshold, e.g. 0.5,
to the average. This strategy was tested by using the LIBSVM package
to obtain individual SVMs with probability estimates. The misclassification
count of the resulting ensemble is shown in figure 5. The confidence estimates
come at the cost of a decrease in performance. This is most likely due to
the fact that the probability SVM variant does not use the training data as
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Figure 5: Comparison of a single SVM classifier which aggregates the measurements from
all tasks and trials (dotted curve), an SVM which averages over trials (dashed curve), the
ensemble classifier (solid curve) and an ensemble classifier employing a confidence measure
(dash-dotted curve). The graph shows how frequently a given misclassification count was
obtained in repeated cross-validation runs.

efficiently as the standard SVM. See [28] and references therein for details of
the estimation procedure.

3.4. Accuracy and ROC analysis of the ensemble classifier

An ensemble classifier with sensitivity 86% and specificity 84% was ob-
tained (estimate based on cross-validation). This corresponds to an misclassi-
fication rate of 15%. Figure 6 shows the ROC curve for the ensemble classifier
(solid curve) obtaining by thresholding the number of votes for the whiplash
group and averaging the results from 100 runs of the cross-validation pro-
cedure. The area under curve (AUC) was 0.86. Two additional curves are
shown, the dashed curve corresponds to using only a single trial during clas-
sification, while the dotted curve corresponds to using two trials. In all cases,
multiple trials were used in training and voting was done over all three tasks.
The results suggest that using multiple trials during the prediction stage
instead of just one improves performance. An improvement is obtained by
going from one to two trials. Adding a third trial does not have a noticeable
effect.
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Figure 6: ROC curve for the ensemble classifier (solid) which shows the true positive rate
(sensitivity) versus the false positive rate (1-specificity). Also shown are ROC curves for
a classifier which use one (dashed) or two (dotted) trials for each task.

Figure 7 illustrates the effect of using different tasks on classifier perfor-
mance. In all cases there are three trials per task. The easy and difficult tasks
give classifiers which perform worse in general than the classifier trained on
the medium difficult task. The latter gives comparable results to the classi-
fier using all three tasks. Incorporating the easy and difficult tasks does not
degrade overall performance, which demonstrates the robustness of ensemble
predictors in general, but then again, there is no apparent gain in perfor-
mance. Visual inspection of the difficult task indicated that the subjects had
some trouble completing it. In retrospect, this task may simply have been
too difficult.

4. Discussion

In general, irrelevant features harm classifier performance and should
therefore be excluded prior to training. In clinical applications there is often
preference for simple models over complex ones. Model interpretability was
therefore deemed important and the feature selection was biased towards
using a small number of features.
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Figure 7: ROC curve for the classifiers trained on individual tasks: Easy (dashed), medium
(dotted) and difficult (dash-dotted). The solid curve corresponds to the ensemble classifier
trained on all three tasks.

While the healthy group consisted of males and females in equal num-
bers, there was considerable imbalance in the WAD group where the females
outnumbered males five to one. Since samples of convenience were used, this
imbalance may be related to the observation that women are more prone to
persistent symptoms after whiplash injuries [4, 5]. If there is a significant
difference in performance between males and females with WAD on the Fly
test, the group mismatch will affect the results presented here. This issue
warrants investigation in future studies.

Although the discrimination studies cited in the introduction are not di-
rectly comparable to this study because of differences in instrumentation,
evaluation and different target groups, it is still worthwhile to compare the
accuracies reported in each of the studies. Grip et al. [16] report a sensitivity
of 90% and specificity of 88% for a classifier trained on 59 WAD subjects and
56 controls. Using a measure derived from the total cervical range of motion,
Prushansky et al. [15] report a sensitivity of 78% and specificity of 76% for
discriminating between 101 chronic whiplash patients and 75 healthy sub-
jects. The classification was obtained by thresholding the derived measure.
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5. Conclusions

A new method is proposed for evaluating the validity of whiplash claims.
The measurement process is simple, risk free and inexpensive. The accuracy
in terms of sensitivity and specificity indicate that the method is of practical
significance. With respect to medicolegal issues an independent study with a
much larger number of subjects and a less biased gender distribution between
the WAD and feign groups would be needed to confirm the results presented
here.

The ensemble classifier was found to have a slight advantage in terms of
accuracy over an SVM classifier which aggregates multiple measurements in
a single feature vector, as well as being more robust. Furthermore, utilizing
multiple trials in the ensemble during classification gives a slight performance
gain over a single trial. The task of medium difficulty appears to be more
useful than either the easy or the difficult tasks for discriminating between
the two groups. An ensemble which included all three tasks had comparable
performance to a classifier trained on the medium difficult task only. More
data is now being collected in order to resolve this issue.

The inclusion of additional data may further improve the ensemble ac-
curacy. Age and gender could be relevant parameters since the rate of neck
injuries due to whiplash tend to be higher for females than males and also
for young adults in the age group 18-24 years [4, 5]. Clinical data such as the
results of the SF-36 health survey and the Whiplash Disability Questionnaire
could also be included.

In the near future, we plan to develop a severity index for neck injuries
by a simple extension of the new method. A severity index can be obtained
by training a classifier with continuous outputs (e.g. an SVM with proba-
bility estimates) on groups of asymptomatic subjects and patients with neck
injuries. Prior to computing the severity index, feigned performance will be
investigated using the method presented here.
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