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Abstract

This paper describes attempts at constructing an auto-
matic sleep stage classifier using EEG recordings. Three
different feature extraction schemes were compared to-
gether with two different pattern classifiers, the recently
introduced support vector machine and the well known k-
nearest neighbor classifier. Using estimates of posterior
probabilities for each of the sleep stages it was possible
to devise a simple post-processing rule which leads to im-
proved accuracy. Compared to a human expert the accu-
racy of the best classifier is 81%.

1 Introduction

Polysomnography (PSG) is a recording of various phys-
iologic parameters during sleep and is used for diagnosis
of sleep related disorders. The parameters of interest in-
clude e.g. the electroencephalogram (EEG), electrooculo-
gram (EOG), electromyogram (EMG), respiratory activity.
During analysis an overnight recording is divided into 20-
30 second epochs and a sleep stage is assigned to each
epoch according to the rules of Rechtschaffen and Kales
[10] (R&K) which require at least one EEG channel, two
EOG channels and an EMG channel. There are six differ-
ent sleep stages, wake (W), light sleep (stages I and II), deep
sleep (stages III and IV) and rapid eye movement (REM.)
The time evolution of sleep in terms of sleep stages is called
a hypnogram and is used for diagnosis. Sleep scoring is per-
formed by an expert and is both difficult and time consum-
ing. Automating the process would therefore be of great in-
terest. Construction of automatic procedures has turned out
to be difficult because the R&K rules are somewhat subjec-
tive (e.g. scoring of stages I and III) resulting in low inter
scorer agreement and more importantly due to the fact that
sleep does not appear to be a discrete process [9]. Despite

of these shortcomings R&K continues to be the “gold stan-
dard” in sleep clinics.

The support vector machine (SVM) has recently become
a popular approach to classification of data. SVMs have
turned out to be useful in a wide variety of real-world clas-
sification problems delivering state-of-the-art performance.
The aim of this study was to investigate how SVMs can
be used to classify sleep stages on the basis of EEG alone.
Furthermore, it will be shown how posterior probability es-
timates can be used to enhance classification accuracy.

The reminder of the paper is organized as follows. The
next section describes the data set used in the experiments.
Section 3 describes the feature extraction. A short overview
of classification and support vector machines is given in sec-
tion 4. Results are presented in section 5 and section 6 con-
cludes the paper.

2 Data set

The data set consists of four over-night recordings of
young subjects (mean age 5 years) which were recorded at
the Helsinki University Hospital, Finland. The recordings
have been scored by an expert neurologist according to the
R&K rules using an epoch length of 30 seconds. EEG data
from a single epoch together with it’s label (sleep stage)
constitutes one example in the data set.

Since only few examples are available from stage III,
they are combined with examples from stage IV and la-
belled slow wave sleep (SWS). Furthermore, examples from
stages I and II are combined and labelled light sleep (LS).
Table 1 shows the distribution of class labels. It is obvious
that the data set is not balanced, LS epochs make up roughly
half of the examples. The EEGs were recorded using the
Nervus system (Taugagreining hf, Iceland) at a sampling
rate of 256 Hz. A single EEG channel, C3-A2 was used.
The data was band pass filtered in the range 0.5 - 70 Hz and
a 50 Hz notch filter applied to remove mains interference.



Subject W LS SWS REM
S52 124 549 198 157
S62 136 567 218 136
S71 123 487 299 167
S73 86 554 192 129

Total (4122) 469 2157 907 589

Table 1. Number of examples per class.

3 Feature extraction

Instead of using the raw time series as input to a pattern
classifier, several features (attributes) are extracted from the
EEG of each epoch. These features are then used as inputs
to the classifier. The problem of feature selection, i.e. which
features to use is non-trivial, ideally the features should be
relatively few and describe the time series accurately. Many
different features have been proposed in the EEG literature
such as Hjorth complexity parameters [6], features derived
from the power spectrum [3], autoregressive modelling [9]
and theory of nonlinear dynamical systems [3]. Here the
Hjorth complexity parameters and several features based on
the power spectrum are described along with a new feature
based on histograms.

3.1 Hjorth complexity parameters

Hjorth [6] provides three quantitative descriptors of EEG
called activity, mobility and complexity. For each epoch
these measures are computed as follows: Activity =
σ0, Mobility = σ1/σ0, Complexity = σ2/σ1 where σi de-
notes the variance of the i-th derivative of the signal (the
0-th derivative corresponds to the signal itself.) All three
parameters form the input to the classifier.

3.2 Features from power spectrum

An estimate of the power spectrum is computed for each
epoch using Welch’s averaged periodogram method [8].
Relative power in the following frequency bands was com-
puted, 0.5 - 2 Hz, 2 - 4 Hz, 4 - 5 Hz, 5 - 7 Hz, 7 - 10
Hz, 10 - 13 Hz, 13 - 15 Hz, 15 - 20 Hz, 20 - 30 Hz
and 30 - 40 Hz. In addition the median frequency (MF)
of the signal and spectral entropy (SEN) were computed
SEN = −(1/ log N)

∑N
k=1 sk log sk where sk is the nor-

malized power spectrum in frequency bin k and N is the
number of bins. The spectral entropy is a measure of the
regularity of the signal, a pure sine wave has entropy zero
and uncorrelated white noise has entropy one. The ten rela-
tive power values together with MF and SEN form the input
to the classifier.
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Figure 1. Analysis of zero-crossings.

3.3 Histogram features based on wave-
form measures

A two dimensional histogram of the amplitude and fre-
quency distribution of a single EEG epoch is constructed
and used as input to the classifier. The frequency-amplitude
histogram is constructed by analyzing successive zero
crossings of the signal as illustrated in figure 1. The time
between successive zero crossings is denoted by Ti and the
peak-to-peak amplitude Ai. The bin count is incremented
for each pair (Ti, Ai). The partitioning of the histogram is
loosely based on the R&K rules. The frequency axis is split
into ten intervals corresponding to the frequency bands from
the previous section. The amplitude axis is split into five in-
tervals: below 5 µV, 5 - 30 µV, 30 - 75 µV, 75 - 100 µV and
100 - 400 µV.

3 - 7 Hz

15 - 40 Hz

0.5 - 2 Hz

EEG

Figure 2. Bank of filters.

In order to capture fast-wave activity which may be su-
perimposed on slower activity (e.g. sleep spindles), the
EEG is sent through a bank of band-pass filters (3rd order
Butterworth.) A histogram is constructed from the output
of each filter and all the histograms combined into a single
histogram which serves as input to the pattern classifier (see
figure 2.) Definition of the filter pass bands is based on the
traditional EEG frequency bands, δ (0.5 - 2 Hz), θ (3 - 7
Hz), α (8 - 12 Hz), σ (12 - 14 Hz) and β+ (15 - 40 Hz).



4 Classification

The pattern recognition problem can be stated as follows:
Assume that there are M different classes of objects, given
a new object assign it to one of the M classes. Each object is
associated with certain measurements x which form the fea-
ture vector. The set of possible classes is denoted by Y . In
supervised learning a training data set (x1, y1), . . . , (xl, y`)
with yi ∈ Y is given and the task is to construct a decision
rule (classifier) that assigns to a new measurement x a label
y ∈ Y . In the following it is assumed that xi ⊂ Rd and
Y = {Wake, LS, SWS, REM}.

Once a classifier has been trained it is necessary to eval-
uate its performance on an independent (labelled) test set.
This is done by presenting the test examples one at a time
to the classifier and counting the errors. Assume that R mis-
classifications are made on a test set of size `T . The proba-
bility of misclassification, p is estimated by p̂ = R/`T (the
estimated accuracy is 1 − p̂.) It is easy to show [11] that a
95% confidence interval on p̂ is given by

p̂± 2
√

p̂(1− p̂)/`T (1)

When working with a single data set cross-validation is
often used to evaluate classifier accuracy. The original data
set is split into v disjoint subsets of equal size `/v. The
classifier is trained v times. Each time a different subset is
left out for testing and the classifier trained on the remaining
v − 1 subsets. The average accuracy over all the test sets is
an estimate of the true classifier accuracy.

To get a more accurate estimate how the classifiers
perform on unseen recordings a variation of the cross-
validation scheme described earlier is used. One subject
is removed from the data set at a time and used as a test
set, the remaining subjects are merged into a single train-
ing set which is used to construct a classifier. Because the
examples from each subject are somewhat correlated, using
standard cross validation would not give an independent test
set and result in overly optimistic estimates of the classifier
accuracy.

4.1 Nearest neighbor classifiers

The k-NN classifier is known to perform well on many
practical problems [7] and is used as a benchmark in this
study. The classifier works as follows: For a given mea-
surement x assign to it the label most frequently represented
amongst the k nearest examples in the training set. An ap-
propriately scaled Euclidian distance metric is used as a
measure of distance between examples. Ties are broken ar-
bitrarily.

4.2 Support vector machines

Recently so-called kernel methods have become popular
in various data mining applications. One example is support
vector machines (SVMs) which have proven useful in many
practical classification problems [2]. To begin with assume
that there are only two classes, Y = {−1, +1}. The basic
idea behind SVM classifiers is to introduce a mapping x →
φ(x) that maps the data into a linear spaceH where they are
(almost) linearly separable1 and then use a linear classifier.2

For linearly separable data it can be shown that a maxi-
mum margin hyperplane is optimal with respect to general-
ization properties (i.e. ability to classify unseen data.) The
maximum margin hyperplane separates the two classes so
that the distance from the hyperplane to the closest exam-
ple(s) is maximal. These examples are known as support
vectors. One of the most important properties of SVMs is
that the mapping φ need not to be explicitly known, only
the inner product (kernel) K(x1,x2) = 〈φ(x1), φ(x2)〉 is
needed. The choice of kernel is problem specific but the
radial basis function (RBF) kernel is commonly used

K(x1,x2) = exp
(−γ||x1 − x2||2

)

where γ is a free parameter to be specified. If the data is not
linearly separable in H the optimization problem is mod-
ified so that incorrect classifications are allowed at a cost.
Finding the maximum margin subject to such a modifica-
tion can be formulated as a quadratic optimization problem
(QP)

minw,b,ξ
1
2w

T w + C
∑`

i=1 ξi

subject to yi(wT φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . , `

where C denotes the relative weight between the two
competing objectives. The classification of a test exam-
ple x is performed by computing sign(f(x)), f(x) =∑`

i=1 αiyiK(xi,x) + b where αi are the Lagrangian mul-
tipliers for the dual problem formulation. Solving the dual
problem avoids the need for computing the features φ(x)
explicitly.

Extension to multi-class problems can be done in sev-
eral ways. The strategy used here follows [1]. Construct
M(M − 1)/2 binary classifiers each trained on data from
two of the specified classes. A point x is sent through all the
classifiers. Each binary classification is considered to be a
voting, the class label that gets the highest number of votes
is then assigned to the point x. Ties are broken arbitrarily.
This is the so-called one-against-one (pairwise) approach
for multi-class classification.

1i.e. a hyperplane exists so that all the +1 examples lie on on side of
the plane and all the −1 examples lie on the other side.

2The decision rule is a linear function of x.



In order to solve the QP problem(s) the parameters, C
and γ have to be specified. Proper selection of the para-
meters is essential for good performance and is discussed
section 5. The SVM experiments were carried out using the
LIBSVM package [1].

4.3 Posterior probabilities

Given an example x both k-NN and SVM simply assign
x to one of the classes W,LS,DS and REM. In many ap-
plications it is desirable to get an estimate of the posterior
probabilities for each class in addition to the classification.
Given a measurement x the goal is to estimate

pi = p(y = i | x), i = 1, . . . , M

In the case that all the posteriors are almost equal, it might
be wise to “reject” the classification, on the other hand if a
single posterior probability dominates all other, the confi-
dence in the classification is higher.

For the k-NN classifier a well known estimate of the pos-
terior probabilities is [4]

pi = p(y = i | x) ≈ ki/k, i = 1, . . . , M

where ki is the number of examples amongst the k nearest
neighbors that belong to class i. Note that for small values
of k some of the ki may be zero.

The LIBSVM package estimates posterior probabilities
by fitting a sigmoid function that maps SVM outputs f to
posterior probabilities. First the pairwise class probabilities
are estimated

rij = p(y = i | y = i or j,x) ≈ 1
1 + exp(Af + B)

where A and B are estimated by minimizing the negative
log-likelihood function using known training data and their
decision values f . Five fold cross validation is used to ob-
tain decision values because labels and decision values are
required to be independent. Once all the rij’s have been
obtained, the pi’s are obtained by solving the following op-
timization problem

minp
1
2

∑M
i=1

∑
j 6=i(rjipi − rijpj)2

subject to
∑M

i=1 pi = 1
pi ≥ 0, i = 1, . . . ,M

See [1] and references therein for more details.
Once the posterior probability estimates are available

they can be used to implement a simple post processing rule
for the sleep stage classification. If the maximum posterior
probability (over all stages) for a given epoch is below a
pre-specified threshold, pmin, do not accept change in sleep
stage (i.e. use the sleep stage from the previous epoch.) This
procedure may result in improved classification due to “in-
ertia” which is built into the R&K rules.

5 Results

In general it is necessary to scale the training data prior
to training the classifier. For LIBSVM, linear scaling into
the interval [−1, 1] is recommended for the RBF kernel [1].
The test set is then scaled accordingly. The same scaling
strategy is used for the k-NN classifier.

It still remains to select parameters (C, γ) for the SVM
and the number of neighbors k for the k-NN. For the SVM
the parameters are selected for each training set using a
five-fold cross validation. An exhaustive (grid) search over
a large set of (C, γ) pairs is performed and the pair with
the highest cross- validation accuracy selected. The SVM
classifier is then retrained using all the data in the training
set with the optimal parameter values and the performance
evaluated using the test set (i.e. a single subject.) To take
an example of when the accuracy is evaluated for record-
ing S52. A training set is constructed by merging data from
recordings S62, S71 and S73. Five-fold cross validation on
this training set is used to find optimal values of C and γ
(SVM). Using the optimal parameters the SVM classifier
is retrained and tested on data from recording S52. The
same procedure is carried out for the 30-NN classifier ex-
cept no parameters had to be optimized. The number of
neighbors for k-NN could be varied and selecting the value
giving the highest cross validation accuracy on each train-
ing set. Because the optimal value of k might turn out to
be quite small the posterior probability estimates would be
inaccurate. Since we are interested in the effect of the pos-
terior probability estimates k is always set to 30 and cross
validation accuracy estimated from the training set. The re-
sults are almost identical to using the optimal value of k.
In the following the number of neighbors is therefore fixed,
k = 30. For misclassification probabilities in the range 0.15
- 0.35 as we have in the tables below on a single test set
(`T ≈ 1000), equation (1) shows that p̂ is known to within
0.03 at a 95% confidence level.

5.1 Hjorth’s complexity parameters

Prior to computing the Hjorth parameters a 30 Hz high-
cut filter (6th order Butterworth) is applied to the data be-
cause the parameters are sensitive to noise. Table 2 shows
the accuracy, number of support vectors (#SV) and optimal
values of C and γ for the SVM together with results for the
nearest neighbor algorithm. The SVM does slightly better
than 30-NN.

5.2 Power spectral measures

Table 3 shows the accuracy obtained using the power
spectrum features. The performance of the SVM is very
similar to 30-NN. The accuracy is slightly higher than was



SVM 30-NN
Test set (C∗, γ∗) #SV Accuracy Accuracy

S52 (215, 21) 1320 0.76 0.69
S62 (215, 21) 1301 0.61 0.60
S71 (213, 21) 1257 0.69 0.70
S73 (211, 23) 1428 0.76 0.77

Overall 0.71 0.69

Table 2. Results using the Hjorth complexity
measures.

obtained using the Hjorth feature set. The SVM has fewer
support vectors than before, indicating that the power spec-
trum measures are better at discriminating between sleep
stages.

SVM 30-NN
Test set (C∗, γ∗) #SV Accuracy Accuracy

S52 (213, 2−3) 991 0.73 0.75
S62 (27, 2−1) 1065 0.71 0.76
S71 (213, 2−3) 928 0.73 0.65
S73 (211, 2−1) 1057 0.84 0.83

Overall 0.75 0.75

Table 3. Results using the power spectrum
features.

5.3 Waveform measures

Table 4 shows the accuracy obtained using the histogram
features based on waveform measures. The accuracy is sim-
ilar to what was obtained using the power spectrum features.
the 30-NN classifier performs slightly better than SVM. The
main reason is the failure of the latter on S62. The values of
(C, γ) found using cross validation on S52, S71 and S73 do
not work well for classification of S62. One explanation is
that the complete data set is relatively small, i.e. more than
three recordings are needed to find optimal values of (C, γ).

SVM k-NN
Test set (C∗, γ∗) #SV Accuracy Accuracy

S52 (211, 2−7) 886 0.76 0.77
S62 (23, 2−3) 940 0.67 0.76
S71 (21, 2−1) 1001 0.78 0.78
S73 (21, 2−1) 1079 0.82 0.82

Overall 0.76 0.79

Table 4. Results using the histogram method.

5.4 Post-processing

Table 5 shows the accuracy obtained using the standard
SVM classifier (std) and the one with a threshold (thr) on
the posterior probabilities, pmin = 0.7 (arbitrarily chosen.)
The corresponding values for the k-NN classifier are given
in table 6. In all cases but one the post processing improves
the accuracy slightly. Figure 3 shows an actual hypnogram
(top) together with automatically generated hypnograms us-
ing the standard SVM classifier (middle) and SVM classi-
fier with threshold (bottom). The post processing appears
to capture the “inertia” built into the R&K rules to some ex-
tent, i.e. it reduces the rapid switching between stages seen
in the plain SVM classifier.

Additional insight into the performance of a classifier is
obtained by constructing a confusion matrix which shows
the relation between actual class counts and predicted class
counts. The matrix has one row and one column for each
class. An element in row i and column j counts the num-
ber of times class i was classified as j. Diagonal elements
count the number of correct classifications and off-diagonal
elements count the number of misclassifications. Two con-
fusion matrices for the SVM classifier with threshold are
shown in tables 7 - 8. There is considerable confusion of
REM stages with LS indicating the need to add EOG and/or
EMG information. There is also some confusion of W and
LS stages which is not surprising because the latter includes
sleep stage I which can be hard to distinguish from the wake
state [9]. Finally there is some confusion between LS and
DS which might be attributed to the fact that the latter in-
cludes sleep stage III which is known to overlap sleep stage
II [9].

Hjorth PSD Histo.
Test set std thr std thr std thr

S52 0.76 0.72 0.73 0.73 0.76 0.77
S62 0.61 0.63 0.71 0.71 0.67 0.78
S71 0.69 0.69 0.73 0.74 0.78 0.81
S73 0.76 0.78 0.84 0.88 0.82 0.86

Overall 0.71 0.71 0.75 0.77 0.76 0.81

Table 5. Standard versus threshold for SVM.

Hjorth PSD Histo.
Test set std thr std thr std thr

S52 0.68 0.72 0.75 0.77 0.76 0.80
S62 0.60 0.60 0.76 0.76 0.77 0.77
S71 0.70 0.70 0.65 0.68 0.79 0.77
S73 0.77 0.79 0.83 0.84 0.83 0.85

Overall 0.69 0.70 0.75 0.76 0.79 0.80

Table 6. Standard versus threshold for 30-NN.



W LS SWS REM
W 92 29 1 1
LS 5 468 7 7

SWS 0 48 251 0
REM 1 126 0 40

Table 7. Confusion matrix for S71.

W LS SWS REM
W 71 10 2 3
LS 59 438 21 36

SWS 16 5 171 0
REM 2 5 0 122

Table 8. Confusion matrix for S73.
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Figure 3. Hypnograms for S73. Expert scor-
ing (top), output of SVM (middle) and SVM
with threshold (bottom).

6 Summary

Of the the three feature sets tested, the histogram based
on waveform measures gave the best results, the power
spectrum features came in second and the Hjorth parameters
third. The simple k-NN classifier gave results comparable
to the SVM suggesting that feature extraction is the critical
issue. Using a threshold for the posterior probability esti-
mates enhances the accuracy. In this case the best accuracy
was 81% which might be high enough to be clinically use-
ful. Studies on (visual) inter-scorer agreement using the full
set of R&K rules report 67% - 91% agreement, see [5] and
references therein for more details. Experts might thus use
hypnograms generated by an automatic classifier as a start-
ing point and manually refine as needed, saving consider-
able time. Future work aims at including EMG and EOG
data in order to get improved detection of REM stages and

decrease confusion between LS and wake. Furthermore,
there is room for improvement when it comes to extraction
of EEG features.
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