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Abstract 13 

Mathematical modelling of cellular processes enables predictions of biological phenotypes under 14 

perturbations and they are therefore widely used in metabolic engineering. Metabolic models can 15 

be roughly divided into two groups, genome-scale metabolic models that are based on steady-16 

state assumptions and dynamic (kinetic) models that are frequently small in scale. Hybrid models 17 

attempt to bridge the gap between the two paradigms by integrating large experimental data sets 18 

with mechanistic models of metabolism, often using state-of-the-art machine learning algorithms. 19 

The new models hold great promise in significantly shortening the design-build-test-learn cycle of 20 

metabolic engineering. Here we review some recent developments in the field. 21 

 22 

Highlights 23 

● Metabolic models have become an essential tool in the metabolic engineering toolbox. 24 

● Constraint-based metabolic models are useful for identifying global changes to 25 
metabolism while dynamic models help fine tune individual pathways. 26 

● The many simplifying assumptions of constraint-based models are gradually being relaxed 27 
by the introduction of new modeling methodology. 28 

● Hybrid models combine network structure with experimental data and machine learning 29 
algorithms for increased scope and improved accuracy. 30 



2 
 

Keywords 31 

Metabolic models, Metabolic engineering, Model-based strain design, Omics data, Machine 32 
learning  33 

 34 

Introduction  35 

 36 

Circular economy has emerged as a key concept to address the global issues caused by 37 

dependence on non-renewable energy sources and increasing human population. In this 38 

scenario, microbial biotechnology is thought to play an important role by providing alternatives to 39 

current production chains [1]. The microbial metabolic space allows production of a large universe 40 

of metabolites. However, the titers, yield, and productivity of most compounds are rather low using 41 

naturally occurring microbial factories. Significant metabolic redesign is therefore often required 42 

to achieve cost-effective production of target compounds, a practice referred to as metabolic 43 

engineering [2,3]. Such efforts have furthermore expanded the known metabolic space via rational 44 

design of unnatural pathways with new stoichiometric balances, new-to-nature reactions, and new 45 

compounds [4-6]. 46 

The exploration of the microbial metabolic space, its optimization, and rational expansion 47 

requires holistic approaches that take system level properties into account. Mathematical 48 

modelling of cellular processes is increasingly used for optimizing microbial cell factories [7,8]. 49 

Metabolic models allow for a rational design process, integration of vast amounts of experimental 50 

data and can therefore reduce the amount of trial-and-error work involved in metabolic 51 

engineering [9,10]. Metabolic modelling formalisms can be roughly divided into two categories, 52 

constraint-based models (CBMs) and dynamic models (DMs), also known as kinetic models 53 

(Figure 1). CBMs are mathematical representations of cellular metabolism, which account for 54 

reaction stoichiometry and reversibility under the assumption of steady-state [11]. These models 55 
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are relatively easy to construct and work with. Despite their intrinsic simplicity, they turn out to be 56 

quite powerful tools to analyze biological networks at the genome-scale. However, they cannot 57 

directly address transient behaviors and do not provide information about metabolite 58 

concentrations, both of which are of importance in metabolic engineering. Dynamic models 59 

incorporate enzyme mechanisms and experimental data with reaction stoichiometry. They are 60 

usually described by a system of nonlinear differential equations and can provide detailed 61 

information about the time evolution of the system [12]. Recent advances in data acquisition and 62 

machine learning are driving the development of new methods for both steady-state and dynamic 63 

models. It is not unreasonable to expect that by merging big data sets with mechanistic models 64 

and state-of-the art machine learning algorithms we will soon witness a new era in genotype-to-65 

phenotype predictions. Here we review recent developments in model-based metabolic 66 

engineering. In particular, methods that combine mechanistic models, large data sets and 67 

machine learning.  68 

Constraint-based models  69 

Constraint-based models are constructed through the systematic integration of genome 70 

annotation, omics data sets, and legacy knowledge such as reaction stoichiometry and gene-71 

protein-reaction (GPR) rules. A CBM represents the metabolic capabilities of a particular 72 

organism and can be used to describe and predict the phenotype in response to environmental 73 

and/or genetic perturbations [11,13]. In the following, a CBM refers to a basic stoichiometric model 74 

of metabolism (Figure 1). Many phenotype prediction and strain optimization methods have been 75 

developed to date. Some of the methods assume that cell metabolism is shaped by specific 76 

biological goals. For instance, the widely used Flux Balance Analysis (FBA) is frequently used 77 

with the assumption that cell growth is the main biological objective [14]. Strain optimization 78 

methods find genetic perturbations resulting in overproduction of a target compound, compared 79 
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to a base strain, e.g. the wild type. Most methods published to date aim to identify designs which 80 

couple product secretion to growth, so-called growth-coupled designs. This approach has multiple 81 

advantages such as robustness against detrimental mutations and simple selection [15]. Growth-82 

coupling has furthermore been demonstrated to be possible for almost all metabolites in five major 83 

production organisms [16]. Since the publication of the first growth-coupling algorithm, OptKnock 84 

[17], numerous algorithms for identifying growth-coupled strategies with CBMs have been 85 

published. Some of the algorithms identify only knockouts, but other algorithms consider knock-86 

ins, overexpression and down-regulation as well.  Alter and Ebert recently identified some of the 87 

underlying metabolic principles involved in growth-coupled designs, including carbon drain and 88 

cofactor and proton balancing [18]. Most of the strain design methods generate a large list of 89 

potential solutions, thus a systematic characterization and ranking of potential strategies is 90 

needed. A recent framework addressing this issue has been published, establishing simple 91 

criteria for the scoring and ranking of strategies [19]. Algorithms for growth-coupled production 92 

continue to be developed, e.g., GeneReg which identifies growth-coupled designs based on 93 

changes in gene expression by taking gene-protein-reaction rules directly into account [20]. The 94 

OptCouple algorithm extends the original OptKnock algorithm by identifying strategies that 95 

combine knock-outs, knock-ins and medium supplementation [21]. The concept of multi-objective 96 

optimization has been also explored. The MOMO algorithm identifies reaction deletions that 97 

optimize several functions simultaneously, including the concurrent maximization of a product and 98 

of biomass, or the maximization of a target product while minimizing the formation of a given by-99 

product [22]. ModCell2 is a framework  for modular cell design [23] that also employs multi-100 

objective optimization. It identifies the genetic modifications needed to design modular cells 101 

(chassis) that can couple with a variety of production modules. A novel approach to strain design 102 

is based on evolutionary game theory [30]. The method identifies gene-associated reaction 103 

knockouts without the assumption of growth maximization. The algorithm considers a game 104 

between two players. One player corresponding to the host strain, attempts to avoid 105 
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overproduction of the target compound while the other player corresponds to the metabolic 106 

engineer that attempts to manipulate the network in order to disrupt the activity of the first player 107 

[31]. 108 

Pathway analysis methods based on the identification of elementary flux modes (EFMs), 109 

and the concept of Minimal Cut Sets (MCS) for strain design [24] have also turned out to be useful 110 

tools in metabolic engineering. The computation of EFMs and MCSs is computationally 111 

demanding for large networks but recent algorithm improvements have reduced the time 112 

complexity considerably, paving the way for widespread application of EFM and MCS in metabolic 113 

engineering [25-28]. While growth-coupled designs are frequently of interest, coupling production 114 

to growth is not always possible in vivo, e.g. due to GPR relationships, and in many bioprocesses 115 

it is not desirable, e.g., when producing toxic metabolites. The Metabolic Valve enumerator 116 

(MoVe) algorithm is an MCS-based method developed to address this situation  [29]. MoVe uses 117 

a metabolic model to identify genetic intervention strategies which decouple two desired 118 

phenotypes such as growth and product formation. 119 

 Although CBMs have been used successfully in many metabolic engineering projects, the 120 

basic assumptions frequently made, steady-state conditions, lack of allosteric regulation and fixed 121 

capacity of enzymes, among others, limit the usefulness of these models. For example, they do 122 

not provide information about temporal dynamics and by ignoring enzyme kinetics, pathway 123 

bottlenecks are ignored. Numerous methods have been proposed in recent years that attempt to 124 

mitigate these limitations. We highlight some of these new methods in the following, emphasizing 125 

methods that involve high-throughput data. 126 

 127 

 128 

 129 
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Dynamic models  130 

The steady-state assumption of CBMs means that they cannot be used to study temporal 131 

behavior, limiting the use of CBMs for modeling many conditions of interest, e.g. those found in 132 

bioreactors. Dynamic Flux Balance Analysis (dFBA) is an extension of FBA that simulates 133 

changes in the extracellular environment by assuming that intracellular concentrations reach a 134 

steady state rapidly in response to extracellular changes [30]. Multiple dFBA approaches have 135 

been proposed, see [31] for a recent overview and description of a state-of-the-art interior-point 136 

method applicable to genome-scale models. The mcPECASO framework uses two-stage 137 

dynamic-FBA to identify growth and phenotypic targets that optimize titer, rate and yield values 138 

[32] and represents an interesting alternative to static strain design approaches. 139 

More sophisticated dynamic models account for detailed kinetic information of a given 140 

network including metabolic fluxes, enzyme and metabolite levels and allosteric interactions 141 

(Figure 1). DMs therefore have broader applicability than CBMs. They enable predictions of cell 142 

behavior over time, in response to genetic and environmental perturbations, and model nonlinear 143 

behavior of the underlying system. However, these models contain many parameters that have 144 

to be obtained experimentally, often with considerable effort [33] which again limits their 145 

widespread use [34]. For large DMs the experimental effort becomes prohibitive and the 146 

parameter values are therefore estimated indirectly.  A number of reviews focusing on the 147 

construction and analysis of dynamic models have recently been published [12,35-37]. 148 

 In the context of metabolic engineering, the goal is to predict the behavior of a particular 149 

biological system under genetic or environmental perturbations. In practice, this goal is achieved 150 

by identifying parameter values for defined kinetic expressions, resulting in some desired 151 

biotechnological output, e.g., overproduction of a target compound. The classical framework for 152 

elucidating parameters responsible for the control of metabolic fluxes over time is metabolic 153 
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control analysis (MCA) [38]. The functional states are quantified using control coefficients, which 154 

provide information about changes in the metabolic flux or metabolite concentration in response 155 

to changes in enzymatic activity. Rational metabolic design approaches take advantage of this 156 

information to identify rate-limiting steps of the network which correspond to potential targets for 157 

engineering. The ORACLE framework is based on MCA and uses uncertainty analysis in the 158 

study of metabolic pathways [39]. It is an ensemble method thatprovides an alternative to full-159 

scale parameter estimation methods and has facilitated the construction of large-scale kinetic 160 

models. The ORACLE framework generates many feasible versions of the same model by 161 

sampling the parameter space and performs statistical analysis of the results. It has e.g., been 162 

used to predict genetic targets for the production of 1,4-butanediol in E. coli [40] and more recently 163 

to increase stress endurance in P. putida [41]. Alternatively, DMs can be obtained from CBMs by 164 

creating a reduced stoichiometric model that captures the properties of the CBM that are most 165 

relevant to the engineering task at hand. The reduced model can then be used with methods that 166 

automatically construct DMs from stoichiometric models, standardized rate laws, and regulatory 167 

interactions [42].  168 

Recent updates to MCA include the development of a method to compute simultaneous 169 

confidence intervals for flux control coefficients, enabling the quantification of the sensitivity of 170 

enzyme levels on metabolite concentrations [43]. This method is noteworthy since it is the first 171 

method to assign statistical significance to the output of ensemble modeling in metabolic 172 

engineering. The NRA method is a constraint-based metabolic control analysis framework for 173 

rational strain engineering [44] that makes use of the confidence intervals. NRA enables 174 

physiologically relevant bounds and design constraints to be imposed on the system and identifies 175 

thermodynamically and kinetically consistent metabolic engineering targets. The method can be 176 

used for a wide range of optimization criteria and with various physiological constraints using 177 

large-scale kinetic models.  178 
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Hybrid models and machine learning tools in metabolic 179 

engineering 180 

In this section we describe methods that extend the basic constraint-based and dynamic 181 

models from previous sections (Figure 1). For CBMs, this can involve thermodynamic constraints, 182 

modeling cell behavior at multiple scales, e.g. metabolism and macromolecular synthesis, or the 183 

incorporation of experimental data, typically large-scale omics data sets, in order to improve 184 

model accuracy. In case of DMs, the data is typically used to infer values of kinetic parameters 185 

that cannot be obtained by direct experiments. 186 

Flux balance analysis of CBMs can result in fluxes that correspond to thermodynamically 187 

infeasible cycles. Several approaches have been proposed to overcome this problem such as 188 

TFA which adds constraints on flux directionality so that it is consistent with the corresponding 189 

change in Gibb’s energy [45]. This ensures that flux values are guaranteed to be 190 

thermodynamically feasible and furthermore, provides a link between fluxes and metabolite 191 

concentrations. Python and Matlab implementations of TFA have recently become available [46] 192 

but it should be noted that TFA makes use of experimental data that may not be directly available 193 

for the organism under study. 194 

A major limitation of CBMs is the lack of regulatory information. The OptRAM algorithm  195 

extends traditional growth-coupling strain design algorithms by identifying engineering strategies 196 

for transcription factors as well as for metabolic genes [47]. The algorithm does not require an 197 

existing regulatory network to identify transcription factor manipulations but is able to infer the 198 

regulatory network directly from transcriptomic data. The authors validated their method 199 

experimentally for ethanol production in yeast. Another frequently made assumption in CBMs is 200 

that the production of metabolites is only limited by carbon uptake, ignoring the role of enzymatic 201 

levels, and enzymatic activities in determining fluxes. A number of methods for integrating 202 
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transcriptomic or proteomic data with CBMs have been published to date that attempt to address 203 

this issue [48]. The general methodology is to take transcript (or protein) levels as proxy for 204 

enzyme load and modulate fluxes accordingly. The expectation is that cellular processes such as 205 

gene regulation that are not directly included in the original stoichiometric model will then be taken 206 

implicitly into account. While it is reasonable to assume that such strategies can lead to improved 207 

prediction accuracy, much work remains to be done in order to understand how best to achieve 208 

this goal [49,50].  209 

The GECKO method [51] takes enzyme capacity into account by adding new constraints 210 

to the model. The enzyme constraints are derived from experimentally determined enzyme 211 

turnover numbers and abundance values obtained from proteomics data, when available. An 212 

advantage of this method is that the resulting model can be used directly with most existing 213 

software for CBMs. Follow-up work used an enzyme-constrained model and Bayesian statistical 214 

learning to identify enzymes which limit the growth of yeast at superoptimal temperatures [52]. 215 

The enzyme that was predicted to be the most rate-limiting was replaced by a thermotolerant 216 

homolog, resulting in increased growth rate compared to the wild type. GECKO has recently been 217 

used to generate a catalogue of enzyme constrained models from existing CBMs and now 218 

supports continuous and version-controlled updates of such models [53]. 219 

Experimentally determined enzyme turnover values are mostly based on in-vitro 220 

measurements and do not necessarily reflect in-vivo conditions. An alternative to sourcing 221 

enzyme turnover values experimentally has recently been proposed [54]. In this method, 222 

regression models were used to predict effective turnover rates in E. coli using features derived 223 

from enzyme biochemistry, structural properties and metabolic network properties. The method 224 

was tested on two modeling frameworks by predicting quantitative proteomic data and was found 225 

to outperform methods based on in-vitro turnover numbers. 226 
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Metabolic-expression models are CBMs that have been combined with mechanistic models of 227 

gene expression (ME-models) [55]. An interesting use case of ME-models in metabolic 228 

engineering is ranking strain designs obtained from CBMs, by taking protein cost and kinetic 229 

variability into account [56]. The DynamicME algorithm combines ME-models with dynamic FBA 230 

and enables time-course simulation of cell metabolism and protein expression. The algorithm 231 

correctly predicted the substrate utilization hierarchy on mixed carbon substrates [57]. The ETFL 232 

framework incorporates thermodynamic constraints are in ME-models [58]. This formalism was 233 

used in a dynamic setting to explain the intracellular mechanism underlying diauxic growth in E. 234 

coli [59]. 235 

Resource Balance Analysis (RBA) [60] shares similarities with both GECKO and the ME-model 236 

formalism in the sense that they all extend FBA by imposing additional constraints, e.g., on 237 

enzyme capacity. RBA enables quantitative predictions of resource allocation in constraint-based 238 

models, including abundance of enzymes, transporters and ribosomes. This can be used to 239 

identify cell functionality that is superflous under given industrial process conditions. Deletion of 240 

the unused functionality would then free up resources for additional growth and/or synthesis of 241 

the target product. A package for the automatic generation of RBA models from CBMs is available 242 

[61].  243 

Recent developments in machine learning and the large amount of publicly available 244 

omics data sets help advance dynamic modeling approaches. Dynamic models ranging from the 245 

small-scale to almost genome-scale can now be parametrized automatically and used in strain 246 

design [62]. The PathParser tool [63] performs thermodynamic and kinetic analysis of metabolic 247 

pathways and provides estimates of protein cost. Metabolomics, fluxomic and proteomic data are 248 

used as inputs together with enzymatic constants obtained from online databases. The method 249 

was used to analyze the Calvin cycle and photorespiration in a cyanobacterium but can potentially 250 

be extended to genome-scale models. In another example, a Bayesian inference method has 251 
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been developed for predicting steady-state fluxes and metabolite concentrations in metabolic 252 

networks, using metabolomic, proteomic and fluxomic data [34]. The K-FIT algorithm [64] 253 

performs parametrization of genome-scale kinetic models using 13C fluxomic data.  254 

 Until recently, the analysis of high-dimensional biological data was hampered by the lack 255 

of suitable tools. During the last decade, developments within the field of machine learning in data 256 

visualization, deep neural networks, data fusion, model interpretation and more have resulted in 257 

new tools that hold great promise for dealing with disparate omics data sets. The advent of hybrid 258 

metabolic models and efficient parametrization methods is likely to shorten the design-build-test-259 

learn cycle significantly, in particular the design and learn stages [9,65,66].  260 

 261 

 Conclusions  262 

Chemical production with cell factories is an important step towards replacing non-263 

renewable carbon and energy sources. To achieve sustainable, cost efficient microbial or plant 264 

production systems, significant redesign of the underlying cellular processes is almost always 265 

required. When redesigning genetic and regulatory circuits, metabolic engineers are increasingly 266 

relying on mathematical models of the underlying processes. Hybrid models bridge the gap 267 

between genome-scale metabolic models and dynamic models. They capture a mechanistic 268 

description of metabolism, retaining some of the scope and simplicity of CBMs and the kinetic 269 

details of DMs. The new generation of metabolic models leverage off recent advances modelling, 270 

machine learning, increasing data availability and expanding computational capabilities. Whether 271 

the new modeling methodologies will lead to a new dawn in metabolic engineering remains to be 272 

seen but judging by the many exiting studies that have come out recently, we believe that there 273 

is good reason for optimism. 274 



12 
 

Highlighted references: 275 

 276 

*5. Ding S, Tian Y, Cai P, Zhang D, Cheng X, Sun D, Yuan L, Chen J, Tu W, Wei D-Q, et al.: 277 
novoPathFinder: a web server for designing novel-pathways with integrating GEM-model. 278 
Nucleic Acids Research 2020, 48:W477-W487. 279 

This paper describes novoPathFinder, a retrosynthesis tool, implemented as a web server, that 280 
enables predictions of novel pathways, given source and target compounds in the context of a 281 
given GEM.  282 

**9. Czajka JJ, Oyetunde T, Tang YJ: Integrated knowledge mining, genome-scale modeling, 283 
and machine learning for predicting Yarrowia lipolytica bioproduction. Metabolic Engineering 284 
2021, 67:227-236. 285 

A holistic approach involving GEM analysis and ML was applied to identify engineering targets 286 
involved in the overproduction of a variety of products. Production data from literature was 287 
compiled and used to train the GEM-ML framework. 288 

**18. Alter TB, Ebert BE: Determination of growth-coupling strategies and their underlying 289 
principles. BMC Bioinformatics 2019, 20:447. 290 

This paper identifies some of the basic principles that drive growth-coupling designs, including 291 
carbon drain and cofactor balancing. The findings help guide synthetic engineering of such 292 
strategies.   293 

* 23. Garcia S, Trinh CT: Multiobjective strain design: A framework for modular cell engineering. 294 
Metabolic Engineering 2019, 51:110-120. 295 

The algorithm described in this paper identifies modular strain designs consisting of core 296 
metabolic pathways (chassis) and production pathways which are broken down into modules 297 
that can be individually fine-tuned. The algorithm holds promise for designing distributed 298 
catalysts in the context of microbiomes. 299 

**29. Venayak N, von Kamp A, Klamt S, Mahadevan R: MoVE identifies metabolic valves to 300 
switch between phenotypic states. Nature Communications 2018, 9:5332. 301 

MoVE identifies dynamically controlled metabolic valves in GEMs which decouple growth and 302 
production phenotypes, enabling high flux for each of the phenotypes. MoVe showed that 303 
decoupling of growth and production phenotypes was possible for a majority of natural 304 
chemicals in E. coli and S. cerevisiae.  305 

**34. Raj K, Venayak N, Mahadevan R: Novel two-stage processes for optimal chemical 306 
production in microbes. Metabolic Engineering 2020, 62:186-197. 307 
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This paper describes a method to engineer a two-step bioprocess where growth and production 308 
are decoupled in time using dynamic pathway regulation. The method identifies optimal growth 309 
and production targets during the first and second stages, respectively, which optimize a user-310 
defined combination of titer, rate and yield.   311 

 312 

*42. van Rosmalen RP, Smith RW, Martins dos Santos VAP, Fleck C, Suarez-Diez M: Model 313 
reduction of genome-scale metabolic models as a basis for targeted kinetic models. Metabolic 314 
Engineering 2021, 64:74-84. 315 

The authors address the difficulty of parameter estimation and simulation in large-scale dynamic 316 
models by creating a subset of the GEMs that capture the main properties of the original model 317 
and automatically constructing a DM from the reduced model. 318 

 319 

Figure legend 320 

Figure 1. An overview of metabolic models for metabolic engineering. A: Constraint-based 321 

models and B: Dynamic models are important computational tools that are frequently used to 322 

guide metabolic engineering efforts. However, the basic assumption of steady-state and the lack 323 

of kinetic information in constraint-based models and the limited scope of dynamic models, can 324 

lead to erroneous predictions. C: Hybrid models that combine network structure with experimental 325 

data and machine learning algorithms increase the scope of the metabolic models and 326 

subsequently provide more accurate predictions of engineering targets. 327 
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