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Abstract 

Industrial production of biofuels and platform chemicals in microalgae and cyanobacteria holds 

great promise since only sunlight, water and atmospheric carbon dioxide are required. At present it 

is not economically feasible to use photosynthetic organisms for the production of large-volume, low 

cost compounds. If this is to change, product yields must improve significantly. This will most likely 

require extensive genetic engineering of phototrophs. Genome-scale models of microbial 

metabolism are increasingly being used in biological discovery and metabolic engineering. This 

chapter provides an overview of genome-scale metabolic models of cyanobacteria and microalgae 

and describes their applications in biotechnology, strain design and analysis of omics data. 
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4.1 Introduction 

Microalgae and cyanobacteria are unicellular microorganisms that are widely distributed in both 

terrestrial and aquatic ecosystems. They possess complex machineries for carrying out oxygenic 

photosynthesis, using light energy to convert water and atmospheric CO2 into biomass. The 

considerable species variety and metabolic versatility has led to a great deal of interest in these 

microorganisms as biocatalysts. Ease of cultivation, rapid growth and their natural ability to 

accumulate lipids in large amounts has led to intense research on the use of microalgae for biofuel 

production. Microalgae are also natural producers of many valuable carotenoids such as 

astaxanthin, fucoxanthin and beta-carotene and have been used to produce such compounds on a 

commercial scale (Yen et al., 2013, Wijffels et al., 2013). Cyanobacteria have successfully been 

engineered to produce an extensive array of commodity compounds, including biofuels, platform 

chemicals and secondary plant metabolites such as limonene (Angermayr et al., 2015) but at 

present it is not economically feasible to use them in industrial production systems. In comparison 

to most of the heterotrophic organisms used in biotechnology, the biology of photosynthetic 

microorganisms is not well understood. A direct consequence is that the field of metabolic 

engineering in phototrophs is considerably less advanced. Titers and production rates have 

frequently been low  and there have been recurrent problems with genetic instability of engineered 

strains.  Nevertheless progress has been significant in recent years (Angermayr et al., 2015, 

Gimpel et al., 2013, Radakovits et al., 2010). This progress can be attributed to improved genetic 

tools and also to the fact that recent strain designs take properties of the photosynthetic metabolism 

into account rather than emulating heterotrophic designs directly. An example of the latter is an 

isobutanol producing Synecochococcus strain where a knockout in glycogen synthesis resulted in 

approx. 50% of the fixed carbon being redirected to isobutanol synthesis (Li et al., 2014). A study of 

the "chemical space“ covered by metabolically engineered cyanobacteria shows that only a small 

part of industrially important compounds has been covered so far (Gudmundsson and Nogales, 

2015). 

Systems biology is an emerging discipline which studies biological processes through detailed 

computer models. Systems biology has the potential to rapidly advance our knowledge about 

cyanobacteria and microalgae, which can then lead to increased applications in biotechnology. 

Among the many tools within systems biology, genome scale metabolic reconstructions (GENREs) 

play a vital role in connecting genotype to phenotype.  

Metabolic GENREs are structured representations of the metabolic capabilities of a target 

organism that are based on existing biochemical, genetic and genotypic knowledge. In its most 

basic form, a GENRE is a list of stoichiometrically balanced metabolic reactions together with 



descriptions of gene-protein relationships. A GENRE can be transformed into a mathematical 

model (genome-scale model, GEM) which represents the metabolic capabilities of a particular 

organism and can be used to predict phenotype from genotype, contextualize omics data etc. 

(O'Brien et al., 2015). 

Systems metabolic engineering combines systems biology, GENREs in particular, with synthetic 

biology and rational and random mutagenesis for optimizing biotechnological processes (Lee et al., 

2012). The adoption of systems metabolic engineering approaches  has resulted in numerous 

success stories in recent years involving heterotrophic organisms (Lee and Kim, 2015). 

Although the development of GENREs for photosynthetic organisms has lagged behind 

reconstructions of heterotrophic "work horses“ such as S. cerevisiae and E. coli (Monk et al., 2014, 

Schmidt et al., 2010), numerous genome-scale reconstructions of microalgae and cyanobacteria 

have been built in the last years. An overview of the construction and analysis of GENREs is given 

in the next section. This is followed by a discussion of their applications to biotechnology with 

special emphasis on metabolic engineering and the contextualization of omics data. 

 

4.2 Construction and analysis of genome--scale metabolic models 

The construction of GENREs can be divided into four main steps: i) construction of an initial draft 

model; ii) manual curation of the draft model; iii) conversion to a mathematical format; and iv) 

network evaluation and analysis (Figure 4.1). Detailed protocols describing how to build high-quality 

reconstructions have been published (Feist et al., 2009, Thiele and Palsson, 2010, Nogales, 2014). 

 

4.2.1 Construction of an initial draft model 

In order to carry out a metabolic reconstruction it is important to have a high quality genome 

annotation of the organism of interest. If this is not the case, gene properties will be ambiguously 

defined, eventually leading to erroneous model predictions. After obtaining an annotated sequence, 

a draft model can be created automatically using one of several existing tools, e.g. Model SEED 

(Henry et al., 2010) and RAVEN (Agren et al., 2013). Existing models which have been extensively 

evaluated are used during the automatic model building process in an attempt to improve the 

accuracy of the draft reconstruction. The draft reconstruction provides an approximation of the 

metabolic capabilities of the organism based on genetic content but specific properties of the 

organism, such as the subcellular location of reactions, cofactors and substrate specificity cannot be 

established with certainty because these properties are generally species specific. 

 

4.2.2 Manual curation of the draft model 



In order for a reconstruction to reflect the true metabolic capabilities of the target organism, a 

manual review of all the reactions included in the initial draft is required. This includes checking the 

mass and charge balance of individual reactions, gene associations of reactions and reaction 

directionality. Databases, such as KEGG (Kanehisa and Goto, 2000), BRENDA (Schomburg et al., 

2002), MetaCyc (Caspi et al., 2006), the Transport Classification Database (Saier et al., 2016) and 

BiGG models (King et al., 2016) as well as organism specific database of cyanobacteria and algae 

such as Cyanobase (Nakao et al., 2010), Cyanomutant (Nakamura et al., 1999) and ChlamyCyc 

(May et al., 2009) are consulted during this step. In addition legacy biochemical data and the 

primary literature is used extensively (Nogales, 2014). Model accuracy depends on the careful 

assignment of reactions to intracellular compartments. Photosynthetic microorganisms have a large 

number of compartments compared to heterotrophic bacteria and there is limited experimental data 

available, therefore the assignment of protein localization within a network is difficult. Cellular 

localization is therefore often based on homologous proteins found in model organisms. In addition, 

software such as PredAlgo (Tardif et al., 2012) which analyzes transit peptide sequences can be 

used to assign proteins to compartments. Accurate assignment of reaction directionality is another 

essential model building step. In the absence of strain-specific biochemical data, the directionality 

can be inferred from standard Gibbs energies of reactions. When experimental values of standard 

Gibbs energy are not available, they can often be estimated computationally (Noor et al., 2013). 

Computational methods for assigning reaction directionality using thermodynamic information 

combined with network topology and heuristic rules have been developed as well (Kummel et al., 

2006). In addition, since electrical potentials and pH vary between different cell compartments in 

photosynthetic organisms, the directionality of a particular reaction may depend on its cellular 

location. The manual curation of GENREs is extremely time-consuming, with a time span ranging 

from months to years, depending on the target organism. However, this step is critical in order to 

obtain an accurate metabolic reconstruction (Nogales, 2014). 

 

4.2.3 Conversion to a mathematical format 

The list of stoichiometrically balanced reactions is collected in a stoichiometric matrix, denoted 

by S, where the rows correspond to metabolites and the columns to reactions. This matrix contains 

the stoichiometric coefficients of each metabolite in each reaction. An assumption of steady-state 

conditions where the concentration of internal metabolites stays constant, bypasses the need for 

specifying kinetic constants for each reaction. This results in a system of equations, Sv = 0 where 

the vector v denotes reaction fluxes, turnover rates of individual metabolites which are the quantities 

of interest. The fluxes are subject to lower bound constraints, vmin and maximum capacity 



constraints vmax such that vmin ≤ v ≤ vmax. Irreversible reactions have lower bounds equal to zero. 

Gene knockouts are simulated by setting the flux in affected reactions to zero and heterologous 

gene insertion is simulated by adding corresponding enzymatic reactions to the model. The 

mathematical method most widely used for studying biochemical networks is flux balance analysis 

(FBA) (Palsson, 2015). The method identifies flux values which maximize a given cellular objective 

while simultaneously satisfying the above constraints. Frequently used objectives are the 

maximization of biomass or the production of a target compound, e.g. eicosapentaenoic acid. The 

former objective requires the construction of a species-specific biomass reaction which represents 

the conversion of metabolic compounds into biomass constituents, i.e. nucleic acids, proteins, lipids 

etc. It is therefore important to obtain experimental data on the macromolecular composition of the 

target organism. In addition, uptake and secretion rates of key metabolites from/to the media are 

needed for accurate model simulations. 

 

4.2.4 Network evaluation and analysis 

After obtaining a mathematical representation of a network, the next steps are to check for errors 

made during the reconstruction, the identification of gaps in metabolic pathways and the model 

validation (by comparing to experimental results). Computational algorithms, often built upon FBA, 

have been developed to aid with these tasks. Algorithms for identifying flux bounds, elucidation of 

objective functions, strain design, predictions of gene essentiality and many more have also been 

developed (Palsson, 2015, Maranas and Zomorrodi, 2016). Software packages implementing the 

algorithms are freely available for the Matlab (Schellenberger et al., 2011, Agren et al., 2013), 

Python (Ebrahim et al., 2013) and R (Gelius-Dietrich et al., 2013) programming languages. 

 

Table 4.1a. Metabolic reconstructions of cyanobacteria. The number of genes, reactions (Rxns), 

metabolites (Mets) and compartments (Cmps) for each network are shown, together with an 

application example from each study. 

 

TABLE 4.1a here 

 

Table 4.1b. Metabolic reconstructions of microalgae. The number of genes, reactions (Rxns), 

metabolites (Mets) and compartments (Cmps) for each network are shown, together with an 

application example from each study. 

 

TABLE 4.1b here 



 

4.3 An overview of existing microalgae and cyanobacterial GENREs and their applications in 

biotechnology 

A number of metabolic reconstructions of algae and cyanobacteria have been published in the 

last decade but they represent a limited number of different species. This is likely due to scarcity of 

experimental data. Approximately 116 cyanobacterial species have been sequenced to date but 

only ~30 microalgal genomes are available. Metabolic reconstructions for 5 cyanobacterial and 9 

microalgae species have been published (Tables 4.1a and 4.1b). These numbers are in stark 

contrast to the approximately 2000 cyanobacteria (Nabout et al., 2013) and 35000 microalgae 

species (Borowitzka, 2013) which have been described to date.  

The first metabolic reconstructions were based solely on existing biochemical knowledge, 

focusing mainly on central carbon metabolism and photosynthetic pathways but with the arrival of 

sequenced genomes, it became possible to build metabolic models at the genome-scale (Baroukh 

et al., 2015).  A metabolic reconstruction of the cyanobacterium Arthrospira platensis was used to 

study exopolysaccharide production under photosynthetic conditions. The production was found to 

be associated with NADH production in the central metabolic pathways (Cogne et al., 2003). The 

microalgae Chlorella pyrenoidosa (Yang et al., 2000) was reconstructed in a similar fashion with the 

common goal of analyzing carbon and energy metabolism in varying light conditions. 

Network reconstruction is an iterative process and models are gradually expanded and updated 

when new data become available. This is exemplified by the increasing scope of Chlamydomonas 

reinhardtii reconstructions (Manichaikul et al., 2009, Chang et al., 2011, Imam et al., 2015) and 

reconstructions of the cyanobacteria Synechocystis sp. PCC6803 (Shastri and Morgan, 2005, 

Nogales et al., 2012, Knoop et al., 2013). One of the main difficulties in modeling the metabolism of 

photoautotrophic microorganisms is the representation of photosynthesis. This involves both the 

light-dependent reactions representing photon capture, water splitting and the generation of ATP 

and NADPH; and the light-independent (“dark“) reactions of CO2 fixation and photorespiration. 

Several simplifying assumptions are usually made in modeling the light-dependent reactions. 

Photons are treated as substrates taking part in chemical reactions and the number of photons is 

assumed to be constant. Electron transfer via membrane proteins is modeled by including the 

proteins as separate species in oxidized and reduced forms. By including multiple compartments in 

the reconstruction, e.g. the thylakoid and cytoplasm it is possible to simulate proton gradient across 

membranes. The dark reactions utilize the ATP and NADPH generated by the light reactions in the 

Calvin cycle and the photorespiration pathway which recycles toxic metabolites generated by the 

reaction of oxygen with RuBisCO. The main challenges in modeling the dark reactions are due to 



limited understanding of the photorespiratory processes and difficulties in modeling carbon 

concentration mechanisms.  

The Chlamydomonas reinhardtii metabolic reconstruction by Chang et al. includes detailed 

modeling of light-driven metabolism, accounting for light intensity and the spectral properties of 

several different light sources. The latter was was achieved by including "prism reactions" which 

decompose light sources into their spectral components which then drive the photon-utilizing 

metabolic reactions (Chang et al., 2011). The light source modeling enables optimization of growth 

conditions, light source design and the study of light-driven metabolism. Shortly afterwards, Nogales 

and colleagues modeled photosynthetic electron flow pathways in detail, including many circular 

electron flow and accessory pathways, enabling the study of photosynthetic processes at the 

system level (Nogales et al., 2012). Alternate electron flow pathways, including cyclic electron flow, 

a hydrogenase and the Mehler reaction were found to assist in modulating the ATP/NADPH ratio. A 

high degree cooperativity of these pathways was found to be essential for optimal photoautotrophic 

metabolism under under changing environmental conditions. The photorespiratory process and 

diurnal cycle in Synechocystis were addressed in (Knoop et al., 2013). The modeling assumption 

that metabolites do not accumulate inside cells is frequently made (see previous section) but this is 

a problematic assumption for cells subject to environmental fluctuations such as light-dark cycles. 

The metabolic states change significantly during these cycles, with accumulation of metabolites 

such as glycogen and lipids during the light periods and their consumption during the dark periods. 

To address this issue Baroukh and colleagues developed a framework called DRUM. The metabolic 

network is decomposed into sub-networks and simple kinetics are used to describe each 

component. Differential equations were then used to describe substrate consumption, biomass 

production, product secretion and the accumulation of internal metabolites. DRUM was used to 

study the accumulation of lipids and carbohydrates in the microalgae Tisochrysis lutea under 

day/night cycles (Baroukh et al., 2014). The development of microalgae and cyanobacteria models 

over time, their main properties and highlights of the respective studies are summarized in Tables 

4.1a and 4.1b.  

In addition to basic research into the photosynthetic metabolism, current GEMs find many uses 

in biotechnology, e.g. studying the production of biofuels and chemical building blocks. In the 

following we highlight some of the biotechnological applications of genome-scale models of 

microalgae and cyanobacteria. It is worth noting that almost all the compounds that have been 

studied to date in silico are low-value, high-volume compounds rather than high-value, low-volume 

compounds. It has been argued that the focus should be on the latter group while engineering 

methodologies are being developed and production costs are still high (Ducat et al., 2011). 



 

4.3.1 Production of alcohols 

The importance of the development of renewable energy is reflected in many of the publications 

on metabolic modeling of these organisms. By inserting ethanol and 1-propanol pathways into a 

Synechocystis GENRE and analyzing the network using FBA, Yoshikawa et al. found that nitrogen 

or phosphate limitation increased the production of both alcohols (Yoshikawa et al., 2011). 

Kamarainen et al. used FBA to study the maximum production potential of various biofuels in 

Synechocystis. They found that the energy yields per mol photon were more or less the same for 

ethanol, propane, butanol, heptadecane and octadecanol (Kamarainen et al., 2012). Vu and 

coworkers estimated theoretical yields for the production of a number of biofuels and platform 

chemicals in Synechococcus 7002 using a suit of computational methods (Vu et al., 2013) and 

identified knockout mutants that were predicted to increase production of the target compounds. 

Lower yields were predicted under dark conditions than under photoautotrophic conditions. In an 

attempt to systematically identify suitable strain designs for ethanol and isobutanol production in 

cyanobacteria, Erdrich and colleagues enumerated all potential knockout strategies in a 

Synechocystis GENRE (Erdrich et al., 2014). The methodology was based on the decomposition of 

the metabolic network into minimal functional units called elementary modes, an alternative to flux 

balance analysis. After identifying all the elementary modes supporting both photosynthetic growth 

and the production of the target compound, the smallest sets of reaction knockouts enabling the 

desired elementary modes were identified. Analysis of the knockout strategies revealed that yields 

could be increased by altering the ATP/NADPH ratio, e.g. by introducing ATP wasting mechanisms. 

A follow-up study by Knoop and Steuer (Knoop and Steuer, 2015) employed flux variability analysis 

to identify which reactions in the network had to be up- or down regulated in order to achieve the 

desired ATP/NADPH ratio. Hendry et al. reconstructed the metabolic network of Synecococcus sp. 

PCC7002 (Hendry et al., 2016). Using a method called Minimization of metabolic adjustments they 

predicted that 10% of the fixed carbon could be directed to the formation of ethanol and butanol. 

This was achieved by altering the ATP/NADPH ratio by knocking out glutamate dehydrogenase. 

Mueller and coworkers (Mueller et al., 2013) recently reconstructed five Cyanothece strains using 

the model from (Saha et al., 2012) as a template . The metabolic capabilities of the five strains with 

respect to production of higher alcohols were assessed using BLAST searches. 

 

4.3.2 Production of bulk chemicals 

In an in silico study on isoprene production in Synechocystis, Saha and coworkers inserted the 

non-native ispS gene which catalyzes the production of isoprene into a Synechocystis GENRE 



(Saha et al., 2012). They used FBA to predict maximum isoprene yields by simulating conditions 

from an in vivo study on isoprene production (Bentley and Melis, 2012). The model underestimated 

the experimentally observed isoprene production by an order of magnitude. The discrepancy was 

attributed to a combination of factors, which included limitations of the biomass function and the 

possibility of reduced in vivo growth on the ispS transformant. A Synechocystis reconstruction was 

used to study carbon partitioning and de novo formation of α-ketoglutarate in two recombinant 

Synechocystis ethylene producing strains (Zavrel et al., 2016). Using experimental data to constrain 

the model, carbon partitioning for the two strains was estimated to be between 10% and 17%. 

Pathways for overproducing succinate from glycogen in Synechocystis under dark conditions were 

identified by screening a large number of non-native enzymatic reactions found in KEGG. Isocitrate 

lyase in particular was found to give a significant increease in succinate production  (Shirai et al., 

2016). 

 

4.3.3 Production of fatty acids 

The ability of some microalgae species to accumulate large quantities of lipids under nutrient 

limiting conditions has lead to major research efforts into maximizing lipid production for use in 

biofuels. To this end, a thorough study of algae metabolism at the systems level is needed. 

Functional annotation of the lipid metabolism uncovered during a Chlamydomonas reinhardtii 

reconstruction, revealed hypothetical latent genetic pathways which represent potential genetic 

engineering targets for lipid production (Chang et al., 2011). Muthuraj and colleagues studied 

neutral lipid accumulation in Chlorella sp. FC2 IITG during a switch from nutrient rich to nutrient 

limited conditions using a dynamic version of FBA to simulate light-dark cycles. The model 

predicted induction of lipid accumulation after approximately 72 h of photoautotrophic growth and 

there was good agreement between predicted and experimental results. The model was used to 

infer changes that took place in intracellular fluxes prior and during the accumulation of lipids 

(Muthuraj et al., 2013). Chlorella protothecoides is another promising candidate for biofuel 

production. Wu and coworkers constructed a metabolic model of this organism and used it to study 

the effects of light absorption and CO2 uptake on the growth rate and oleic acid production (Wu et 

al., 2015). The optimal ratio of photon and CO2 uptake was predicted to be around 8. Similar model 

simulations were carried out for a reconstruction of Chlorella variabilis (Juneja et al., 2016) where in 

addition to photon and CO2 uptake, the effects of ammonia and phosphorus uptake were also 

studied. A recent reconstruction of the diatom Phaeodactylum tricornutum which includes highly 

detailed modeling of lipid metabolism (Levering et al., 2016) can provide new insights into lipid 

production in this diatom. 



 

4.3.4 Hydrogen production 

GENREs have been used to gain insights into hydrogen production in both cyanobacteria and 

microalgae. The maximum theoretical yields of hydrogen in Synechocystis was estimated with FBA 

to be 0.17 mmol⋅gDW-1
⋅h-1 which indicates that there is a large room for improvement in optimizing 

hydrogen producing strains (Montagud et al., 2010). In a later study, Saha and coauthors found that 

two recent Synechocystis reconstructions gave theoretical estimates that were approximately 50% 

lower than experimentally observed values (Saha et al., 2012). They attributed the difference 

between in silico and in vivo results to a combination of modeling and experimental issues. Mass 

and charge imbalances in the model by Montagud et al. may play a role in the discrepancy between 

the two computational studies  (Yoshikawa et al., 2011). The use of GEMs for enhancing hydrogen 

production in Synechocystis has recently been reviewed (Montagud et al., 2015). The C. reinhardtii 

reconstruction AlgaGEM predicted increased hydrogen production under mixotrophic conditions 

upon disruption of cyclic electron flow and that overexpression of the PFR1 gene would increase 

hydrogen yields under dark conditions (Dal'Molin et al., 2011). 

 

4.4 Metabolic engineering 

To obtain cyanobacteria and microalgae strains of industrial importance, extensive genetic 

engineering will be needed. The ability of GEMs to predict phenotypic properties under genetic and 

environmental perturbations makes them highly useful in metabolic engineering since the global 

impact of gene insertions and gene knockouts on metabolism can be predicted in advance. As a 

result, it is possible to search for optimal strain-designs in silico. 

There are several examples in the literature of GEMs being used for optimizing strain designs 

(Machado and Herrgard, 2015). To the best of our knowledge, all the computationally designed 

strains that have been experimentally verified to date have involved heterotrophs but the same 

computational methods can just as easily be applied to metabolic models of phototrophs. Algorithms 

for strain design can roughly be classified as belonging to one of three types, de novo pathway 

assembly, enzyme modulation and enzyme deletion. An example of the first type is OptStrain  

(Pharkya et al., 2004) which can be used to design pathways for non-native compounds as well as 

to increase yields of native compounds. OptStrain could also be used to search for pathways for 

converting toxic byproducts into non-toxic metabolites. The algorithm works by searching a 

database of enzymatic reactions from multiple organisms such as KEGG, for inclusion in a given 

metabolic model in order to reach a pre-specified production target. The OptForce algorithm 

(Ranganathan et al., 2010) searches for sets of enzymes which must be up-regulated, down-



regulated or knocked out in order to achieve a minimum level of target product. OptKnock (Burgard 

et al., 2003) is a prototypical example of the third group of algorithms which search for enzyme 

knockouts to couple the production of a target compound to growth. Growth-coupling is a desirable 

feature in engineered strains since it mitigates the problems of selection and low genetic stability 

and adaptive laboratory evolution can then be used to increase production of the target compound. 

In silico knockout studies using metabolic models of the cyanobacteria  Synechocystis PCC6803 

(Nogales et al., 2013, Erdrich et al., 2014) and Synechococcus PCC7002 (Vu et al., 2013) found 

that a large number of knockouts is required to couple product secretion to growth, typically 8 - 13 

enzymes whereas only 3 - 5 knockouts were needed in E. coli (Feist et al., 2010). The phototroph 

knockout strains identified in (Nogales et al., 2013, Erdrich et al., 2014) revealed that blocking the 

alternative electron flow pathways of photosynthesis is frequently required to obtain growth coupling. 

These results suggest that fundamentally different strategies are needed for obtaining growth 

coupling in phototrophs. In light of these results, it should be noted that the accuracy of knockout 

predictions is expected to decrease with increasing number of knockouts due to cumulative effects 

of model limitations and modeling errors. Using a GENRE of Arthrospira platensis NIES-39, 

Yoshikawa and coworkers studied the effects of nitrate depletion on glycogen production and 

identified zwf as a possible knockout target for increasing glycogen production. An in-silico gene 

knockout simulation identified NADPH dehydrogenase and cytochrome-c oxidase as possible 

targets for improving ethanol yields (Yoshikawa et al., 2015). 

Model-driven strain design for algae and cyanobacteria is still in its infancy but the successful 

applications of this technology to heterotrophic organisms, together with advances in genetic tools 

for phototrophs, strongly suggest that systems metabolic engineering  will play an important role for 

cyanobacteria and microalgae in the near future. 

 

4.5 Contextualization of OMICS data 

Modern biology experiments frequently involve data collection on a large scale in the form of 

“omics” data, i.e. genomic, transcriptomic, lipidomic, proteomic and metabolomic data sets. The 

arrival of omics technologies enables the monitoring of molecular components at the cellular level 

and at the genome-scale. Analyzing large and often disparate data sets has been a challenge, 

requiring the development of new computational approaches (De Smet and Marchal, 2010). 

Genome-scale models provide a much needed biological context for analyzing omics data sets and 

can be used to obtain a mechanistic interpretation of the data. Several methods for the integration of 

omics data with GEMs have been proposed in recent years (Hyduke et al., 2013, Machado and 

Herrgard, 2014). Most of the methods can be classified into two main categories, i) a “switch“ 



approach which simply remove reactions from the model whose corresponding genes have 

expression values below a user-specified threshold; and ii) a “valve” approach, which constrains the 

reaction fluxes based on relative gene expression levels. Other approaches include a method based 

purely on the network topology of GEMs (Patil and Nielsen, 2005). 

Model integration methods have been used for the construction of tissue-specific metabolic 

models of higher plants, including arabidopsis (Mintz-Oron et al., 2012) and maize (Simons et al., 

2014). Omics data from microalgae and cyanobacteria have also been analyzed with the aid of 

GEMs. For instance, the inclusion of high-resolution time series transcriptomic data in a C. 

reinhardtii GEM identified the dynamic changes in central pathways in response to nitrogen 

starvation and light availability (Imam et al., 2015). The model was used to study how carbon flux 

was funneled towards biosynthesis of triacylglycerols instead of biomass during nitrogen starvation. 

In a study on the phototrophic metabolism of Chlorella protothecoides,  13C-label profiling was used 

to constrain fluxes in a GEM of this oleaginous green alga. The results revealed negligible 

photorespiratory fluxes and low activity of the tricarboxylic acid cycle under phototrophic conditions 

(Wu et al., 2015). A Synechocystis network in conjunction with transcriptomics data was used to 

identify metabolic hot-spots serving as regulatory hubs during changes in light availability (Montagud 

et al., 2010). Nogales and Agudo used transcriptomics data derived from autotrophic conditions to 

constrain a GEM of Synechocystis (Nogales and Agudo, 2015) and identified those photosynthetic 

pathways which are potentially active under optimal light conditions only. Transcriptomic and 

physiological data were used in combination with a genome-scale model to study the circadian 

rhythm in Synechocystis (Saha et al., 2016). Relative flux changes in the major cellular processes, 

such as CO2 fixation, the pentose phosphate pathway and the TCA cycle were found to correlate 

well with relative changes in expression levels of the associated genes. A tool for data integration 

and visualization has recently been developed for the Synechocystis network (Maarleveld et al., 

2014). By providing a clear graphical map of metabolic and transcriptomic data, this tool is a 

valuable addition for future systems biology and metabolic engineering studies. 

 

.6 Outlook 

High-quality, comprehensive, genome-scale models of photosynthetic microorganisms are a 

powerful tool for studying poorly characterized biological processes. By expanding our biological 

knowledge and providing means to rapidly carry out experiments on a large-scale, in silico, the 

models are likely play a vital role in future biotechnology research efforts. Future progress will be 

expedited by increasing the scope and accuracy of existing models (King et al., 2015). In addition to 

modeling photosynthesis and metabolism in more detail (Steuer et al., 2012), the next generation of 



photosynthetic models needs to go beyond metabolism. By combining metabolic models with 

models of gene expression, so-called ME-models enable accurate predictions of growth, 

macromolecular composition, metabolic fluxes, enzyme efficiencies under nutrient limitation and 

more (Thiele et al., 2012, Lerman et al., 2012). By taking costs of enzyme synthesis into account 

and the complex interactions of metabolism and expression, ME-models could lead to improved 

strain designs compared to metabolic-only models. Another promising direction of model expansion 

is the integration of protein structure with metabolic models (Chang et al., 2013). Such models 

enable predictions of the effects of enzyme structural properties on cell metabolism and could be 

used to gain insights into the complex photosynthetic macrostructures such as the photosystems 

and light-harvesting complexes. 

The development of next generation GEMs will not only improve our understanding of 

phototrophs but will also enable optimized model-driven designs for biotechnological applications, 

bridging the gap between photoautotrophic and heterotrophic biocatalysts and significantly 

contribute to biosustainability efforts. 
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Species Reference Genes Rxns Mets Cmps Application example 

Arthrospira platensis 

PCC8005 
Cogne et al., 2003 n/a 121 134 1 Exopolysaccharide production 

Arthrospira platensis C1 Klanchui et al., 2012 692 875 837 3 Identification of essential genes 

Arthrospira platensis 

NIES-39 
Yoshikawa et al., 2015 n/a 746 673 3 Glycogen and ethanol production 

Synechocystis sp. 

PCC6803 

Shastri and Morgan, 

2005 
n/a 70 46 1 Study of photoautotrophic metabolism 

  Hong and Lee, 2007 86 56 48 2 Study of photoautotrophic metabolism 

  Fu, 2009 633 831 704 1 Ethanol production 

  Montagud et al., 2010 669 882 790 2 Metabolic engineering and omic data integration 

  Knoop et al., 2010 337 380 291 1 Functional properties of phototrophic growth 

  Montagud et al., 2011 811 956 911 2 Flux coupling in photoautotrophic metabolism 

  Yoshikawa et al., 2011 393 493 465 2 Ethanol and 1-propanol production 

  Nogales et al., 2012 678 863 795 3 Analysis of photosynthetic processes 

  Saha et al., 2012 731 1156 996 4 Comparisons of Cyanothece and Synechocystis 

  Knoop et al., 2013 677 759 601 4 Modelling of diurnal cycle  

Cyanothece sp. ATCC 

51142 
Saha et al., 2012 773 946 811 4 Comparisons of Cyanothece and Synechocystis 

  Vu et al., 2012 806 719 587 1 System analysis of light-driven metabolism 

Synecococcus elongatus 

PCC7942 
Triana et al., 2014 715 851 838 2 Analysis of flux partitioning 

Synecococcus sp.  

PCC7002 

Hamilton and Reed, 

2012 
611 552 542 2 Analysis of metabolic differences in cyanobacteria 

  Vu et al., 2013 708 602 581 2 Biofuel production 

  Hendry et al., 2016 728 742 696 7 Ethanol and butanol production 

 

Table 4.1a. Metabolic reconstructions of cyanobacteria. The number of genes, reactions (Rxns), 

metabolites (Mets) and compartments (Cmps) for each network are shown, together with an 

application example from each study. 



Species Reference Genes Rxns Mets Cmps Example application 

Chlorella pyrenoidosa Yang et al., 2000 n/a 67 61 1 Analysis of carbon and energy metabolism 

Chlorella protothecoides Wu et al., 2015 461 272 144 4 Fatty acid production 

Chlorella sp. FC2 Muthuraj et al., 2013 n/a 154 114 1 Lipid accumulation during nutrient starvation 

Chlorella variabilis 

NC64A 
Juneja et al., 2016 526 1455 1236 6 Analysis of different light conditions 

Chlamydomonas 

reinhardtii 
Manichaikul et al., 2009 n/a 259 467 6 Model refinement via transcript verification exps. 

  Boyle and Morgan, 2009 n/a 484 458 3 Estimation of intracellular fluxes 

  Cogne et al., 2011 n/a 280 278 1 Analysis of light-driven respiration 

  Chang et al., 2011 1080 2190 1068 9 Growth predictions for different light light sources 

  Dal'Molin et al., 2011 2279 1725 1869 4 Hydrogen production 

  Kliphuis et al., 2012 n/a 160 164 2 Analysis of biomass yield on light 

  Imam et al., 2015 1355 2394 1845 10 Lipid accumulation during nitrogen starvation 

Ostreococcus tauri Krumholz et al., 2012 n/a 871 1014 1 Network comparisons 

Ostreococcus 

lucimarinus 
Krumholz et al., 2012 n/a 964 1100 1 Network comparisons 

Tisochysis lutea Baroukh et al., 2014 n/a 160 157 2 Dynamic modeling of intracellular processes 

Phaeodactylum 

tricornutum 
Hunt et al., 2014 680 318 335 4 Network decomposition 

  Kim et al., 2016 607 849 587 5 Exploration of lower glycolysis in the mitochondria 

  Levering et al., 2016 1027 4456 2172 6 Detailed modeling of lipid metabolism 

 

Table 4.1b. Metabolic reconstructions of microalgae. The number of genes, reactions (Rxns), 

metabolites (Mets) and compartments (Cmps) for each network are shown, together with an 

application example from each study. 

 

  



Figure 4.1: Reconstructing a genome scale metabolic model. 
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