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Abstract.

Background: Automatic seizure detection algorithms have been in development
for years with the aim of making the analysis of long EEG recordings more ef-
ficient. To train such detectors, a large amount of EEG data with precise seizure
annotations is required. However, due to privacy concerns, and the inherent com-
plexity of EEG signals, obtaining data sets diverse enough to capture all rel-
evant EEG patterns is difficult. The current state-of-the-art seizure classifica-
tion algorithms are far from perfect and routinely misclassify EEG segments as
seizure where there is no seizure activity and vice versa. A seizure detection al-
gorithm that can indicate where its predictions are of low confidence, thereby
requiring verification by a human expert, carries substantial real-world value.
Modern seizure detectors based on deep neural networks can output probabil-
ity/confidence estimates alongside seizure/non-seizure classification, but little at-
tention has been given to how accurate these estimates are, in other words, how
well the detector is calibrated.

Methods: In this study, we analyzed the calibration of seizure detectors based
on a convolutional neural network, that were trained on adult and neonatal EEG
data, respectively. Four calibration methods from the literature, temperature scal-
ing, ensemble, dropout, and mixup were evaluated.

Results: We found that the uncalibrated detectors make the vast majority of the
predictions with confidence close to one, i.e., they are overconfident and, there-
fore, the detectors with higher overall accuracy are better calibrated. Our results
indicate that all the calibration methods studied here make the detectors less con-
fident in incorrect predictions, a desirable trait, but to a lesser extent, they also
result in detectors less confident in correct predictions. The best calibration was
obtained with the ensemble and dropout methods. When class labels in the seizure
data are highly imbalanced, it is recommended that confidence estimates for in-
dividual classes are analyzed separately.

Keywords: calibration, uncertainty, deep neural networks, automatic seizure detection,
electroencephalogram
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1 Introduction

Seizures are a common neurological emergency, with an estimated prevalence of 1 % [30],
that can cause permanent brain damage, and even death, if untreated [45]. Almost half
of the neonates affected by seizures face long-term neurodevelopmental disorders [S1].
Adults experiencing seizures are at higher risk for psychiatric disorders such as de-
pression and are about 10 times more likely to commit suicide than the general pop-
ulation [22]. Heart dysfunction provoked by seizures can cause sudden death [44]. To
improve the lives of people with seizures, prompt detection and appropriate treatment
is crucial. Treatment options include anti-epileptic drugs, brain surgery and electrical
brain stimulation [27, 28, 38, 41].

The current gold standard for neonatal and adult seizure detection is an electroen-
cephalogram (EEG), a recording of the electrical activity of the brain. EEG signal ac-
quisition is typically done by placing electrodes on the scalp and the voltage difference
between pairs of electrodes is recorded. The recordings can span from minutes to days,
depending on the clinical indication for EEG monitoring. Due to signal complexity
and high variability [20, 34, 53], analysis of EEG recordings requires time and special
expertise that is not always available [7].

The goal of automated seizure detection algorithms (SDAs) [35, 43] is to accelerate
EEG analysis significantly while preserving the current level of diagnostic accuracy.
Such SDAs could enable the widespread use of EEGs, e.g. in intensive care units, with-
out the need for experts to monitor each recording. The development of SDAs that per-
form as well as human experts faces two main challenges. First, due to patient privacy
issues, there is often a limited amount of data available for algorithm training [10]. Sec-
ond, obtaining precise annotations of seizure onset and offset times is challenging, as
human experts may disagree on the presence of seizure events [9, 17]. SDAs trained on
relatively small data sets are expected to have difficulties classifying unseen EEG seg-
ments accurately. Compounding the problem is the presence of label noise in the data
because of ambiguity in the human annotations of the EEG [5]. Combining seizure/non-
seizure predictions with confidence estimates would make the detectors more useful in
a clinical setting [3, 24]. By doing so, EEG intervals with low-confidence predictions
can be flagged for review by a human expert. The end result would be faster analysis
without compromising the accuracy of the annotations. For example, a study using an
SDA based on a support vector machine (SVM) suggests that by passing 40 % of the
data with the least confident predictions to a human expert, an accuracy of 99 % could
be achieved [2].

Many modern SDAs are based on deep neural networks (DNNs) [35, 43]. For a given
EEG segment, a neural network classifier outputs a value between zero and one. This
value can be interpreted as an estimate of the probability that the segment contains a
seizure. A value close to zero indicates that the segment is unlikely to contain a seizure
and a value close to one indicates that the segment most likely contains a seizure. The
value can thus be regarded as the confidence the classifier has in the prediction. By
thresholding at, say, 0.5, the segment can be classified as a seizure or non-seizure seg-
ment and labelled accordingly in the EEG recording. However, the accuracy of these



Calibration Methods for Automatic Seizure Detection Algorithms 3

confidence estimates has received limited attention in the context of SDAs [6]. In case
the estimates are accurate, a classifier is considered to be well-calibrated. In other
words, if a classifier outputs a confidence estimate of, e.g., 0.7 for some EEG seg-
ments, and it is correct in its prediction for 70 % of these segments, the classifier is
well-calibrated. The same should also hold for other confidence levels.

Guo et al. [16] have reported that DNNs trained on image and document classification
tasks tend to be overconfident in their predictions, despite achieving high classification
accuracy. Based on their empirical results, they suggest several potential causes that
result in poorly calibrated DNNSs, including increased model capacity, batch normaliza-
tion, training with small weight decay and using the cross-entropy loss function [54].
Thulasidasan et al. [50] suggest that training with 0/1 annotations negatively influences
calibration and is improved by utilizing mixup [56]. Hein et al. [19] showed that DNNs
employing the ReLU activation function can be particularly overconfident in their pre-
dictions for data far away from the training data. On the other hand, Minderer et al. [31]
found that state-of-the-art DNNs for image classification tend to be well-calibrated and
suggest that improvements in model accuracy benefit calibration. It should be noted
that the image classification data sets employed in the above studies typically feature
hundreds of classes whereas seizure detection is normally formulated as a binary classi-
fication task. Researchers have proposed various approaches to improve the calibration
of DNNs [1, 12]. These methods include post-processing techniques such as isotonic
regression [55] and Platt scaling [39], which adjust the output probabilities of the net-
work in order to improve calibration. Methods such as mixup [50, 56] and dropout [11]
modify the training process, and in the case of dropout, also the prediction process.

In this work, we extend our previous analysis of SDA calibration [6] by analyzing four
different calibration methods that have been found to work well with DNNS, albeit in
different settings. We show that neonatal and adult SDAs based on a convolution neural
network are overconfident in their predictions and that detectors with higher overall
accuracy are better calibrated. All the calibration methods evaluated here, temperature
scaling, ensemble, dropout and mixup, make the detector less confident for incorrect
predictions. A comparison of the methods is done on two publicly available data sets;
one adult and one neonatal data set.

2 Methods

2.1 Data

The adult EEG data set was obtained from version 2.0.0 of the TUH EEG seizure cor-
pus [18], which consists of recordings with diverse recording set-ups and seizure types.
The most frequent seizure type is focal non-specific seizures, but other types, such as
generalized non-specific seizures and complex partial seizures are also present. In this
study, we utilized a subset of recordings recorded with averaged reference, i.e. average
potential of all the electrodes was used as a reference. The acquisition of the signals
was done with a version of a NicoletOne EEG system (Natus, USA) and the sampling
frequency was between 250 Hz and 1000 Hz. Human experts annotated the recordings
using a bipolar temporal central parasagittal montage with 22 channels (Fig. 1), and
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the same montage was employed in this study. Specifically, channels Fp1-F7, F7-T3,
T3-T5, T5-01, Fp2-F8, F8-T4, T4-T6, T6-02, T3-C3, C3-Cz, Cz-C4, C4-T4, Fpl-F3,
F3-C3, C3-P3, P3-01, Fp2-F4, F4-C4, C4-P4, P4-02, A1-T3 and T4-A2 were derived
from the recorded signals. The data set contains predefined training, validation and test
sets.

The neonatal data set used in this study consists of 79 recordings [47]. Acquisition of the
EEG signals was done with NicoletOne EEG system (Natus, USA), using 19 electrodes
with the reference electrode located at the midline and the sampling frequency was
256 Hz. To annotate the recordings, three human experts utilized a bipolar longitudinal
(double banana) montage with 18 channels. Schematic representation of the montage
is given in Fig. 1. For this study, the same set of channels was used, including Fp2-F4,
F4-C4, C4-P4, P4-02, Fpl-F3, F3-C3, C3-P3, P3-0O1, Fp2-F8, F§8-T4, T4-T6, T6-02,
Fpl1-F7,F7-T3, T3-T5, T5-O1, Fz-Cz and Cz-Pz, which were derived from the recorded
EEG signals. The data set does not come with predefined training, validation and test
set splits. Table 1 shows summary statistics for the two data sets. We note that the data
sets are imbalanced, i.e., less than 10 % of the total recording duration corresponds to
seizure segments.

(a) Montage for adult EEG recordings. (b) Montage for neonatal EEG recordings.

Fig. 1: Montages for adult (a) and neonatal (b) EEG recordings. In both cases, the elec-
trodes are positioned according to the 10-20 system. Each arrow denotes an EEG chan-
nel that is used as input to an SDA.

Since most adult seizures are present in the frequency range between 3 and 30 Hz [15]
and neonatal seizures can be as slow as 0.5 Hz [13], the EEG signals were filtered with a
Butterworth band-pass filter with cut-off frequencies 0.5 Hz and 30 Hz. Before filtering,
the EEG signals were downsampled to 250 Hz and further downsampled to 62 Hz after
filtering, reducing the input size and subsequently model size by approximately factor
4. After filtering and downsampling, each recording was cut into 16 seconds segments.
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Table 1: Summary statistics for the adult [18] and neonatal [47] data sets used in this
study. A patient “with seizures” has at least one 16 seconds seizure segment. Standard
deviations are shown in parentheses.

Adult data set Neonatal data set

Training  Validation Test

Number of patients 297 41 41 79
Total duration of recordings [hours]  603.08 372.21 119.98 111.90
Total duration of seizures [hours] 26.41 10.91 7.57 10.91
Fraction of seizure activity [%] 4.38 2.93 6.31 9.75
Average duration of recordings 2.03 9.08 2.93 1.42
per patient [hours] (3.29) (17.85) (2.07) (0.56)
Average duration of seizures 0.24 0.34 0.22 0.28
per patient with seizures [hours] 041 0.42) (0.31) (0.38)
Number of seizure segments 19148 8066 5197 8563
Number of non-seizure segments 127220 79759 24547 20233

To increase the amount of seizure data available for training, an overlap of 12 seconds
was used for the seizure segments.

2.2 Seizure Detection Algorithm

The detector takes multi-channel EEG as input and outputs seizure/non-seizure prob-
ability estimates. This is accomplished by extracting features from each EEG channel
via 11 convolutional layers with 32 filters of size 3 x 1, followed by batch normalization
layers and ReLU activation functions [36]. Average pooling is applied before the fourth,
seventh, and tenth convolutional layers. An attention layer is used to combine feature
vectors extracted from individual EEG channels into one feature vector [21]. The clas-
sification part of the network is a fully connected layer that maps feature vectors of
dimension 58 to two outputs (seizure/non-seizure) utilizing a softmax activation func-
tion to obtain values in (0,1) and can be interpreted as class probabilities. With only
29,964 learnable parameters, the SDA is practically tiny, compared to state-of-the-art
networks used in natural language processing and computer vision. A benefit of using
such a small network is that it can be deployed on devices with limited computation
resources. A detailed description of the SDA is given in [4].

The adult and neonatal detectors were trained by optimizing the negative log-likelihood
loss function with the Adam optimizer and a mini-batch size of 256. To address the
imbalance between the number of available seizure and non-seizure segments in the
training sets, each mini-batch contained 128 seizure and 128 non-seizure segments.
One epoch corresponds to a single pass through all available seizure segments and an
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equal number of randomly selected non-seizure segments. The SDAs were trained for
50 epochs where the initial learning rate of 0.001 was halved every 20 epochs. The
number of epochs and the learning rate decay were chosen so that the area under the
curve computed on the adult validation set was maximized. The hyper-parameter values
used in this experiment are similar to those of previous experiments [5] conducted on
the neonatal data set. We observed that the performance of the SDA is insensitive to
small changes in hyper-parameter values.

2.3 Calibration methods
Temperature scaling

Platt scaling [39] is a generic method to transform classifier outputs to a probability
distribution over classes. It was originally proposed for use with SVM classifiers and has
previously been used with an SVM-based neonatal seizure detector to smooth classifier
outputs and to aggregate predictions over multiple channels [48]. The method fits a
parameterized sigmoid or softmax function to (unscaled) classifier outputs. In [16] a
simplified version with one learnable parameter called temperature scaling was used
to improve the calibration of neural networks trained on image and document data. In
case the non-seizure class is denoted with 0 and the seizure class with 1, the calibrated
seizure/non-seizure probability estimates are obtained as follows,

A() _ cxp (Zy)/ T) .
Pj = exp (Zg) /T) +exp (Z(li) /T> ;

i=1,2,...,N, j=0,1, (1

where zgl) (c = 0,1) are the unscaled outputs of instance i and ﬁ§i> is the calibrated
probability of instance i belonging to class j. The value of the T parameter is chosen
based on a held-out validation set after the network has been trained to avoid over-
fitting [39]. In case T = 1 the calibrated probabilities are equal to the softmax outputs
and when 7 is large the probabilities approach 1/2. Applying temperature scaling to
the unscaled outputs of the network does not change the predicted seizure/non-seizure

labels, the only difference is in the probability (confidence) estimates.

Dropout

Dropout is a simple and widely used regularization technique for improving the general-
ization of DNNs [46]. The idea behind dropout is to randomly drop nodes from the net-
work with a fixed probability, p. This forces the network to learn more robust features
that are not dependent on any single node and reduce overfitting. Dropout is usually
only used during training, i.e., the full network is used to obtain predictions. Dropout
can also be employed in the prediction phase (Monte Carlo dropout). In this setting,
the final seizure/non-seizure prediction is obtained by averaging T softmax outputs. It
has been shown empirically that Monte Carlo improves the calibration of DNNs [29]
and can be interpreted as approximate Bayesian inference [11]. Dropout with p = 0.1
was used for the convolutional and attention layers and p = 0.5 for the fully connected
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layer [11, 46]. The average of T = 10 softmax predictions was used for final probability
estimates (averaging over a larger number of predictions gave similar results, data not
shown).

Deep ensembles

An ensemble of multiple DNNGs, referred to as deep ensemble in the following, has been
shown to give small improvements in classification performance compared to the best
individual model in the ensemble [23]. An added benefit of using an ensemble of DNNs
is improved calibration. Lakshminarayanan et al. [26] found that an ensemble with only
five models trained with the same setup can lead to a noticeable improvement in cali-
bration. Here we used an ensemble of 10 SDAs. Each individual SDA was trained with
the same training parameters and the same data. The resulting SDAs were nevertheless
not identical since network weights were randomly initialized for each network prior
to training. Additionally, the order in which the data was presented to the network was
different since the data was randomly shuffled for every epoch. Once the detectors were
trained, the final prediction was obtained by averaging the softmax outputs.

Mixup

Mixup is a data-agnostic augmentation method that has been found to improve the
generalization of many neural network architectures [56]. It has also been found to
improve the model calibration of classifiers for both images and text [50]. Mixup creates
augmented training examples by forming linear combinations of feature-target pairs. A
new feature-target (%,¥) is generated as follows,

= 2x 4 (1 -2 )x), )
7=20 + (1= )Y, 3)

where x() and x\/) are two randomly selected training EEG segments, y<i> and y(j ) are
corresponding 0/1 (non-seizure/seizure) labels and A € [0, 1] is a random variable drawn
from a Beta distribution with hyper-parameter ¢. It is important to select an appropriate
o to achieve good results, in this study, o = 0.3 was used after testing several different
values on the adult validation set.

2.4 Evaluation

The adult SDA was assessed using a dedicated test set, while the evaluation of the
neonatal SDA was done using leave-one-subject-out cross-validation since the data set
lacks a distinct test set.

The SDAs were assessed for their classification performance using the area under the
curve (AUC), sensitivity (SE), and specificity (SP). Sensitivity refers to the fraction of
correctly classified seizure segments, while specificity refers to the fraction of correctly
classified non-seizure segments. The confidence of a prediction is the softmax output of
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the predicted seizure/non-seizure class, i.e., the class with the higher probability esti-
mate. Since the threshold for seizure/non-seizure prediction is set at 0.5, the confidence
estimates range between 0.5 and 1.0.

A reliability diagram [32] is a visual representation of a classifier’s calibration, as
shown in figure 2. The diagram shows the fraction of accurately predicted segments,
providing an empirical estimation of the true underlying accuracy, against confidence
levels. A well-calibrated classifier is indicated by empirical frequencies that align closely
with the line of average confidence within a given bin. If there is sufficient data, the av-
erage confidence line should approximate the identity line.

fraction of overconfidence
100 = correct pred. average conf.
ina bin in a bin
underconfidence

80 =
e 60m
40 =
20 m
() I e——————————————————

Confadence

Fig. 2: Reliability diagram. The interval between the lowest (0.5) and highest (1.0) pos-
sible confidence values is split into five equally sized bins. All EEG segments are al-
located to a bin based on the confidence of their predictions. Grey bars represent the
fraction of the correctly predicted segments in a bin. The black curve represents the
average confidence in each bin. Differences between the bars and the curve indicate
miscalibration, i.e. the SDA is either underconfident or overconfident for the predic-
tions in the bin.

To evaluate the calibration metrics, all N available seizure and non-seizure segments
were split into K = 5 bins based on the confidence estimate made by the SDA. Bin
edges were set such that the interval between the lowest (0.5) and highest (1.0) possible
confidence is partitioned into equally sized intervals. The set of segments in bin k is
denoted with By and |By| is the number of segments in bin k. The fraction of correct
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predictions (empirical frequency) in a bin k is denoted with acc(By) and the average
confidence estimate in bin k with conf(By,).

The expected calibration error (ECE) [16],
ECE = i B lacc(By) — conf(By)| 4)
= N k k)ls

measures the difference between predicted confidence and empirical frequency. Bins
with more segments weigh more than bins with fewer segments. The closer the metric
is to zero, the better calibrated the model is.

In medical applications, classifiers that are not overconfident in the predictions are pre-
ferred. Therefore, we include the overconfidence error (OE) [50] for calibration evalu-
ation,

Z | 4 conf(By) - max(conf(By) — acc(By),0), (5)

A modification of the static calibration error (SCE) [33] is proposed to capture calibra-
tion of individual classes (seizure and non-seizure) when the class frequencies differ
widely,

1 K C
SCE—K—;;

In comparison with the original definition in [33], this definition differs in the weighting
factor 1B, |/N,, where N, is the number of segments of class ¢ (seizure or non-seizure).
Here the weights are proportional to the number of segments in each class and not the
total number of segments. As a result, all the classes have the same weight in the overall
sum and the imbalanced data issue is addressed. In other words, the static calibration
error is the average expected calibration error using segments of just one class.

B, ) —conf(B,)|. (6)

We also include two calibration metrics which measure the distance of the estimated
probability to the target label. Specifically, the Brier score (BS) [8],

1 N ) N2
— o) _ ()
BS =~ ; (y y ) , @)
and negative log-likelihood (NLL) [40],
N
NLL = — Yy log ) + (1 - y<i>) log (1 - y<">) , )

i=1

where $1) is the softmax output of instance i for class 1 (seizure class) and y(i) is the
target label of instance i.
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2.5 Implementation

All code was written in Python 3.9. EEG recordings in EDF format were read with the
MNE library [14] (version 0.24.1) and pre-processed with SciPy [52] (version 1.8.0).
The detectors were developed with PyTorch [37] (version 1.11.0) and an NVIDIA
GeForce GTX 1080 Ti graphics card. The code is available at a GitHub repository
(github.com/anaborovac/Calibrated-SDA).

3 Results and Discussion

In the following, we refer to an SDA which does not utilize any specific calibration
method as uncalibrated. We show that the calibration of detectors is highly correlated
with overall classification accuracy as most correct and incorrect predictions appear to
have high confidence. Using calibration methods does not result in perfectly calibrated
SDAs, however, lower confidence in incorrect predictions is obtained with all the meth-
ods, temperature scaling, ensemble, dropout and mixup.

3.1 Tuning hyper-parameters

The number of training epochs, learning decay schedule and the o parameter in mixup
were optimized by maximizing the AUC on the adult validation set. The neonatal data
set is relatively small and it is therefore costly to set aside separate data for validation.
Instead of reducing the amount of neonatal data available for training, we decided to
simply train the neonatal detector using the same hyper-parameters that we obtained
for the adult detector. Fig. 3 shows the negative log-likelihood loss and AUC during
training on the adult data sets. The validation loss fluctuates significantly but the AUC
is relatively stable after approx. 30 epochs. Longer training and different weight decay
schedules gave similar results (data not shown). The fluctuations in the validation loss
may be due to a small and imbalanced data set, overfitting or ambiguity in annotations
of seizure/non-seizure segments in the data sets.

3.2 Uncalibrated SDAs

To construct the deep ensembles, 10 sets of uncalibrated adult and neonatal SDAs were
obtained by starting from random initial weights. We begin by analyzing these detec-
tors individually to gain insight into the variability in the classification and calibration
performance of individual classifiers.

Fig. 4 shows that the performance of the adult SDAs is on average slightly better in
comparison with the neonatal SDAs. This is not unexpected since the adult training set
is significantly larger. The figure also shows that neonatal SDAs have less variability
than adult SDAs. This may simply be a consequence of the use of leave-one-subject-
out cross-validation on the neonatal data set since averaging over 38 detectors has a
smoothing effect. Fig. 4 also shows the expected trade-off between sensitivity and speci-
ficity. Detectors with high seizure detection rates incorrectly classify more non-seizure
segments as seizures and vice versa. However, since the AUC values are similar for
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= Training set = ----- Validation set

NLL

10 20 30 40 50

Fig. 3: Left: Negative log-likelihood (NLL) loss on the adult data set during training of
an uncalibrated SDA. Right: Corresponding area under the curve (AUC) values.

all adult and neonatal detectors, respectively, the threshold for seizure/non-seizure pre-
diction may be adjusted to achieve the desired classification performance. Adult SDAs
exhibit considerable variance in sensitivity. A possible explanation is that the number
of seizure segments available for training is much lower than the number of non-seizure
segments. This may result in detectors that are not able to accurately capture the relevant

AUC x 100 N SE B sp

100 100 -
\/\/\/\/ ~——
90 1 90
g 80 7 /\/\/\/\ 507
I_‘ —_—
70 70 1
60 1 60
T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Adult uncalibrated SDA Neonatal uncalibrated SDA

Fig. 4: Area under the curve (AUC), sensitivity (SE) and specificity (SP) for individual
uncalibrated adult (left) and neonatal (right) SDAs from the deep ensembles (arbitrary
order). Metrics are averaged across all patients which have at least one seizure segment.
A separate test set is used to compute metrics for the adult data set while leave-one-
subject-out cross-validation is used to compute the metrics for the neonatal data set.
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features that differentiate seizures from non-seizure segments. Other factors that could
contribute to higher variance are the heterogeneity of the different seizure types and in-
correct annotations due to ambiguity in the scoring of EEGs by human experts [9, 17].

Fig. 5 shows the expected and static calibration errors for individual adult and neonatal
detectors. In both cases, the expected calibration and overconfidence errors were prac-
tically identical (data not shown). This means that the SDAs are overconfident in their
predictions, i.e. they are incorrect more frequently than the probabilities returned by
the SDAs indicate. This can partly be explained by the use of ReLU activation func-
tions [19] and batch normalization layers [16] in the detectors. The calibration may
have been further compromised due to the training of the detectors using binary labels
(non-seizure/seizure) [50] and cross-entropy loss function [54].

For the neonatal data set the expected and static calibration errors were very similar
since the fraction of seizure segments in left-out neonatal patients is 49 % whereas for
the adult test set only 17 % of the segments are seizure segments. Since static calibration
error is an average of expected calibration errors calculated separately for seizure and
non-seizure segments, it is more suitable for imbalanced data sets (e.g., the adult data
set) than the expected calibration error.

ECE [l SCE

10 1 10 1
7.5 7.5

X 5 5
2.5 1 2.5 1
0 0
T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 910
Adult uncalibrated SDA Neonatal uncalibrated SDA

Fig. 5: Expected calibration error (ECE) and static calibration error (SCE) for individ-
ual uncalibrated adult (left) and neonatal (right) SDAs from the deep ensembles. The
metrics are calculated based on all available segments in the test set for adult SDAs and
left-out patients for neonatal SDAs.

Due to the imbalance in the data sets we decided to investigate the calibration of seizure
and non-seizure classes individually. Fig. 6 shows that lower sensitivity/specificity re-
sults in higher expected calibration error, i.e. in worse calibration. This is a consequence
of most (above 83 %) segments being predicted with confidence greater than 0.9. From
equation (4) it follows that the bin with segments predicted with the highest confidence
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affects the expected calibration error the most. Therefore, if the overall accuracy is very
high and also close to the overall confidence, the detector is well-calibrated. The figure
shows that the expected calibration error is higher for the seizure segments than for the
non-seizure segments. However, there are more non-seizure segments in the adult test
set and therefore calibration on the non-seizure segments weighs more in the computa-
tion of the expected calibration error.

Bl Seizure segments B Non-seizure segments

Adult uncalibrated SDAs Neonatal uncalibrated SDAs
20 20 .
— Y,
§ ° o °
= 10 10
: e
[J
0 oon 0 S
T T T T T T
80 90 100 80 90 100
Fraction of correctly Fraction of correctly
predicted segments [%] predicted segments [%]

Fig. 6: Expected calibration error (ECE) calculated using seizure (red) and non-seizure
(blue) segments. Each red and blue point represents one uncalibrated adult (left) and
neonatal (right) SDA in the deep ensembles. The metrics are calculated from all avail-
able segments in the test set for the adult SDAs and from the left-out patients for neona-
tal SDAs.

3.3 Calibrated SDAs

The AUC was averaged over all SDAs in an ensemble and the individual classifier
with AUC closest to the ensemble average was selected as a representative uncalibrated
SDA in the following. Table 2 shows how different calibration methods affect the per-
formance of the adult and neonatal SDAs. The classification performance of the adult
SDAs using temperature scaling is identical to the uncalibrated classifier since the scal-
ing procedure only affects confidence estimates and not the predicted class. The method
is therefore not listed separately in the table. Temperature scaling was not applied to the
neonatal SDAs since there was no dedicated validation set available for tuning the tem-
perature parameter 7.

The performance metrics in Table 2 have fairly large variance across patients for all the
SDAs, the sensitivity metric in particular. A likely explanation is that there are far fewer
seizure segments (13 %) in the training set, in comparison to non-seizure segments (Ta-
ble 1). Although each mini-batch is balanced during training, the seizure class has fewer
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Table 2: Patient-based classification metrics for uncalibrated and calibrated adult and
neonatal SDAs. Metrics are averaged across patients with at least one 16 seconds long
seizure segment. For uncalibrated detectors, the range of values for all detectors in the
ensemble is reported. Standard deviations are shown in parentheses.

Uncalibrated Calibrated
Ensemble Dropout  Mixup
Adult SDA
Area under the curve 0.94 0.95 0.95 0.96
0.11) (0.11) (0.11) (0.09)
Sensitivity [%] 77.74 79.72 79.57 77.77
y e (26.51) (25.94)  (26.26) (23.62)
[ 96.44 97.51 97.0 96.45
Specificity [%] (5.44) @.07) (414  (5.03)
Neonatal SDA
0.93 0.95 0.92 0.92
Area under the curve 0.12) (0.10) (0.14) (0.13)
Sensitivity [%] 71.71 74.11 71.67 68.94
Y17 (30.77) (27.84) (28.68) (31.48)
n 97.11 97.28 94.07 96.91
Specificity [%] (7.04) (7.95)  (1277)  (5.98)

examples defining it. Furthermore, the metrics are only based on 31 adult and 38 neona-
tal patients, respectively, and differences in performance for 2 — 3 patients can end up
having a significant effect on the overall mean and standard deviation. In both data sets,
there are approx. three patients that the SDAs consistently had problems classifying and
result in sensitivity values below 50 % and/or specificity below 90 %. The heterogene-
ity of the different seizure types and ambiguity in EEG signals are likely to contribute
to the variability as well. From Table 2 we conclude that calibration methods do not
outperform uncalibrated detectors, but they also do not noticeably degrade classifica-
tion performance in terms of the area under the curve, sensitivity and specificity. This is
in line with previous studies which applied ensembling, dropout and mixup for image
classification [23, 25, 49, 50, 57].

The calibration metrics in Table 3 were computed by averaging over all available test
segments, instead of first computing the corresponding metrics over the patients and
then averaging. The reason is that the number of segments behind each patient varies
widely. For some patients, there are fewer than 100 segments and this causes difficul-
ties when computing metrics based on confidence bins. Overall, large improvements in
calibration were not observed for either data set. However, we observe that all the cal-
ibration methods reduce the overconfidence error, a highly desired feature in medical
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applications. An overconfidence error close to zero for the adult data set implies that
the calibrated SDAs are mainly underconfident in their predictions since the expected
calibration errors are non-zero. The neonatal SDAs are overconfident, after employing
the calibration methods, but the level of overconfidence error has decreased.

Table 3: Segment-based calibration metrics for uncalibrated and calibrated adult and
neonatal SDAs. The metrics were calculated on all available segments in a test set for
the adult SDAs and on the left-out patients for the neonatal SDAs.

Uncalibrated Calibrated
Temp. scaling Ensemble Dropout Mixup

Adult SDA

Expected cal. error [%] 1.61 2.58 0.62 1.58 4.05
Overconfidence error [%] 1.55 0.0 0.03 0.0 0.0
Static calibration error [%] 3.54 3.21 2.02 2.31 3.65
Brier score 0.04 0.04 0.03 0.04 0.04
Negative log-likelihood 0.17 0.17 0.13 0.14 0.16
Neonatal SDA

Expected cal. error [%] 8.76 - 4.72 4.80 1.76
Overconfidence error [%] 8.76 - 4.72 4.80 1.51
Static calibration error [%] 9.01 - 5.40 5.27 7.62
Brier score 0.10 - 0.08 0.09 0.11
Negative log-likelihood 0.59 - 0.29 0.32 0.35

For the neonatal SDAs, a large difference between expected and static calibration errors
was not expected since the data set is balanced. For mixup, however, the two metrics
differed considerably (Table 3). This indicates that the detector is overconfident for seg-
ments of one class and underconfident for the other. When the seizure and non-seizure
components of the metrics are analyzed separately (Fig. 8), it appears that the SDA with
mixup is overconfident in predicting seizure segments and not confident enough when
predicting non-seizure segments.

The predicted confidence values are analysed in more detail in Fig. 9 where the confi-
dence estimates of correct and incorrect predictions are analyzed separately. Diagrams
with similar patterns are obtained when only seizure or non-seizure segments are used
(data not shown). The uncalibrated SDAs are confident in the predictions, both correct
and incorrect, and most of them have confidence close to one. As much as it is desired
that the SDAs are confident in their correct predictions, it is also important that incor-
rect predictions are made with lower confidence, making it possible to inform the user
that some parts of EEG are difficult to classify. In this case, binary seizure/non-seizure
predictions can be accompanied by confidence values as illustrated in Fig. 7. For all the
calibration methods, the number of incorrect predictions in the most confident bins is
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Fig. 7: Predictions for a short neonatal EEG recording (< 1 hour), obtained with an SDA
employing dropout. Black blocks represent consensus seizures where the three human
experts scoring the recording were in agreement. Black lines represent seizures anno-
tated by at least one of the three experts. Red blocks represent seizure predictions and
the corresponding probability estimates (confidence values) are denoted with a black
curve.

clearly reduced, which is what we want, but the SDAs are less confident in their correct
predictions compared to uncalibrated SDAs. However, in the latter case, the reduction
is fairly small and mainly the bin with the second confidence increases in size.

Mixup results in an SDA with the lowest average confidence among the calibration
methods studied here and with the lowest number of segments in the most confident
bin. This also means that the largest number of incorrect predictions are, as preferred,
predicted with confidence close to 0.5. In the clinical setting, this would imply that more
segments would be passed for an additional review done by a human expert, but only
a few incorrectly classified would be missed. This is especially noticeable for neonatal
SDA. Note that the hyper-parameters were tuned on the adult validation set and different
results could be obtained if they were to be tuned on neonatal data.

4 Conclusion

In line with a previous study [6], we find that uncalibrated SDAs tend to be overcon-
fident in their predictions and the probability corresponding to an incorrect prediction
gives little indication that the prediction is wrong. Since most predictions are made with
confidence close to one, a more accurate detector is also better calibrated.
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Fig. 8: Reliability diagrams for a neonatal SDA trained with mixup. The black step func-
tion indicates the average confidence of segments in each bin. Coloured bars indicate
the fraction of correctly predicted segments in a bin. Black bars indicate the fraction
of segments in a bin. The detector is overconfident for seizure segments and undercon-
fident for non-seizure segments leading to an expected calibration error of 1.76 and a
static calibration error of 7.62.

The four calibration methods included in this study did not degrade classification per-
formance, i.e. their sensitivity, specificity and AUC values were similar to the uncali-
brated SDAs. A slight improvement among the classification metrics for the adult SDA
utilizing ensembling, dropout or mixup, was observed. These methods can be regarded
as regularisation techniques that reduce model overfitting and improve generalization
which in turn can explain increased detector accuracy.

With some additional computational costs we found a modest improvement in calibra-
tion, with the ensemble method giving the largest improvement, followed by dropout.
Mixup gave mixed results for the adult SDA but did better on the neonatal data. Tem-
perature scaling gave little improvement.

In [6] we found that dropout gave a noticeable improvement in expected calibration
error for both adult and neonatal, SDAs. A possible explanation for this discrepancy is
that here we are starting from a more accurate uncalibrated classifier than in our earlier
work which then tends to be better calibrated [31]. The pre-processing and evaluation
steps used here are slightly different from previous studies which also contributes to
the difference. In this study, the EEG data was not normalized prior to feeding it to
the network, and the mini-batch size was larger. This resulted in slightly more accu-
rate uncalibrated SDAs than before. Additionally, here the non-seizure segments do not
overlap and consequently, seizure segments represent a bigger portion of the test data.
Since calibration on these segments tends to be worse than on the non-seizure segments,
the overall expected calibration error is higher. Analyzing the calibration of each class
is therefore advised in case of class imbalance.

All the calibrated detectors were noticeably less confident in incorrect predictions com-
pared to uncalibrated detectors. EEG segments with low confidence values can then be



18 A. Borovac et al.

Correct predictions

led Temp. le4| Ensemble led Dropout led Mixup
scaling
2 2 2 2
g
1 1 1 1
0 -9 T 0 - T 0 -1 T 0
0.5 1 0.5 1 0.5 1 0.5 1
Incorrect predictions
Temp. Ensemble Dropout Mixup
scaling
500 500 1 500 500
250 250 I | 250 {250
0 T T 0 T T 0 T T 0
0.5 1 0.5 1 0.5 1 0.5 1
Confidence Confidence Confidence Confidence
(a) Adult SDA
Correct predictions
le4 [ Ensemble led Dropout led Mixup
1 1 1
Iy
0 - T 0 -9 T 0 -7 T
0.5 1 0.5 1 0.5 1
Incorrect predictions
Ensemble Dropout Mixup
1000 1000 1000
Iy
500 I 500 I 500 1™ b————
0 -7 T 0 -7 T 0 -7 T
0.5 1 0.5 1 0.5 1
Confidence Confidence Confidence

(b) Neonatal SDA

Fig. 9: Gray histograms represent the number of correctly and incorrectly classified seg-
ments of an arbitrarily chosen uncalibrated adult and neonatal SDA. The step functions
represent the number of correctly and incorrectly classified segments.
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passed to a human expert for manual review and eventual correction. This is a desirable
property of an SDA if the main objective is to develop a detector that is as accurate
as possible. However, in order for the SDA to be useful in clinical practice and make
reviewing more time-efficient, the expert should not be given the majority of the ac-
quired data for review. To limit the amount of data that requires human expertise, the
confidence in correct predictions should be close to one and these EEG segments would
therefore not be passed on to the expert. This pattern was observed for the ensemble and
dropout, for temperature scaling and mixup the drop in confidence for correct predic-
tions was larger and unfavourable.

Further work is needed to evaluate if such a setup makes EEG scoring more effi-
cient in the clinical environment. Introducing confidence estimates alongside binary
seizure/non-seizure predictions to the EEG monitors could however confound the in-
terpretation of the user. A study on how to best present the confidence estimates is
therefore needed. Another possibility would be to present to the user only a few se-
lected EEG segments from which the detector would learn and subsequently improve.
The segments could e.g., be chosen with an active learning approach [42].
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