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Abstract

Objective: To investigate the reliability of several well-known quantitative EEG (qEEG) features in the elderly in the resting, eyes closed
condition and study the effects of epoch length and channel derivations on reliability.
Methods: Fifteen healthy adults, over 50 years of age, underwent 10 EEG recordings over a 2-month period. Various qEEG features
derived from power spectral, coherence, entropy and complexity analysis of the EEG were computed. Reliability was quantified using
an intraclass correlation coefficient.
Results: The highest reliability was obtained with the average montage, reliability increased with epoch length up to 40 s, longer epochs
gave only marginal improvement. The reliability of the qEEG features was highest for power spectral parameters, followed by regularity
measures based on entropy and complexity, coherence being least reliable.
Conclusions: Montage and epoch length had considerable effects on reliability. Several apparently unrelated regularity measures had sim-
ilar stability. Reliability of coherence measures was strongly dependent on channel location and frequency bands.
Significance: The reliability of regularity measures has until now received limited attention. Low reliability of coherence measures in gen-
eral may limit their usefulness in the clinical setting.
� 2007 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Quantitative EEG is well established for assessing the
functional state of the brain. One or more numerical values
(features) are calculated from the EEG and used as indica-
tors for the brain state.

In order for a given feature to be clinically useful it must
be highly stable in the sense that repeated measurements of
a particular feature from a single subject should not exhibit
large fluctuations when no systematic change occurs (e.g.,
drug effects). Stability itself is of course not a guarantee
for clinical usefulness, e.g., the parameter may not be
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relevant for the condition of interest. The variability
observed in EEG recordings can be attributed to changes
in vigilance and the randomness that is inherent in the
EEG. The former can be accounted for to some extent
by carefully controlling experimental conditions but the
latter is unavoidable. The EEG variability is reflected to
a different extent in different features.

A number of studies have been carried out to evaluate
the reliability of the resting EEG. Because of different selec-
tion of features and reliability measures, difference in
choice of channel derivations, subject condition, epoch
length, test–retest intervals and artifact handling, compar-
isons between studies are difficult. Most of the studies have
focused on spectral and coherence based measures.

In a study by Grosveld et al. (1973) amplitude, frequency
and time-domain parameters were used to discriminate
gy. Published by Elsevier Ireland Ltd. All rights reserved.
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between subjects (16 subjects, 10 sessions during 1 year).
The classification accuracy was 81%. The individual fea-
tures with the highest discriminating ability were peak
frequency in the a band and b power, indicating that
inter-individual variation in these parameters is large com-
pared to intra-individual variation.

Intra-individual stability of spectral parameters in
10–13-year-old children (26 subjects, 10-month retest inter-
val) was investigated by Gasser et al. (1985). Their main
findings were that for the eyes closed condition, the test–
retest reliability was similar for absolute and relative
power, it was rather uniform over different derivations
but not across frequency bands. The highest reliability
was obtained for the a band, then h and the lowest for d
and b bands. Twenty seconds of data was found to be suf-
ficient, using 40 or 60 s epochs did not improve reliability.

In a later study, Gasser et al. (1987) investigated the
test–retest reliability of the coherence for the EEG at rest
using the same EEG sample. The reliability was somewhat
greater for the two a bands and greater when the coherence
itself was large. The reliability was considerably lower than
for absolute and relative band powers.

Kondacs and Szabó (1999) studied long-term intra-indi-
vidual variability of various spectral measures together
with coherence in healthy adults (45 subjects, 25–62-month
retest interval) in the resting, eyes closed condition. Total
power and a mean frequency proved to be most reliable,
followed by absolute a and b power. Absolute d power
and a coherence were less reliable. The average montage
gave slightly higher reliability than referential and longitu-
dinal bipolar montages. The computation was based on
40 s of EEG.

Corsi-Cabrera et al. (1997) investigated the stability of
inter- and intrahemispheric correlation, a measure related
to coherence, in young women (9 subjects, 11 sessions dur-
ing 1 month) in the resting, eyes closed condition. Using
20 s of data, within subject reliability was evaluated by
computing the multiple correlation coefficients between
all EEG features of the eleven sessions. The correlation
measure was found to be a stable characteristic over a
1-month period.

Salinsky et al. (1991) evaluated reliability of spectral
parameters in healthy adults (19 subjects, 5 min and
12–16 week retest intervals) in the eyes closed condition
while subjects performed an auditory choice reaction time
task to stabilize alertness. The peak a frequency and med-
ian frequency were the most stable features and there was
essentially no difference between absolute and relative band
power reliability. Sixty second epochs gave marginally
higher averaged reliability score than 40 and 20 s epochs.
Montage was found to have a significant effect. No signif-
icant association between intra-record and inter-record
variability could be demonstrated.

Although the above studies were carried out under dif-
ferent experimental conditions some general conclusions
can be made. Stable parameter estimates are obtained with
20–40 s of resting EEG. Absolute and relative band power
measures have similar reliability and are considerably more
reliable than coherence measures. Power in alpha band has
the highest reliability, followed by h and b bands, with d
being the least reliable. Median alpha and peak frequencies
are found to be stable.

Features based on power spectrum decomposition have
been the mainstay of qEEG analysis for both clinical and
research purposes to this day. Numerous alternative fea-
tures based on, e.g., autoregressive modelling, source local-
ization, information theory and chaos theory have also
been proposed. To our knowledge little is known about
the reliability of these alternative measures.

The computation of some of the ‘‘modern’’ features is
quite involved and often there is a large number of free
parameters to be specified, making validation of published
results difficult. This is true in particular for features orig-
inating in chaos theory such as correlation dimension and
Lyapunov exponents.

This study is a part of a larger investigation into the use
of qEEG in the diagnosis of Alzheimer’s disease (AD). The
selection of features and channel derivations is slightly
biased towards features which have been found useful for
discriminating between healthy and AD subjects. Only fea-
tures which are relatively simple to implement are included
in the study which means that correlation dimension,
Lyapunov exponents and several other well-known param-
eters are omitted. There are still many details that must be
taken into consideration during calculation of the qEEG
features. The approach here is to duplicate procedures pre-
viously found to be useful, not to determine the ‘‘proper’’
way of carrying out the computations.

The aim of the present study was to investigate the reli-
ability of several regularity measures based on entropy and
complexity, some of which have recently been introduced
in the EEG literature, and compare them to traditional
qEEG features. Two important but often overlooked issues
in qEEG studies are the selection of montage and epoch
length. This study addresses both issues by investigating
the reliability of different montages and varying epoch
lengths. Most of the work on the quantification of EEG
stability to date has been based on data from two recording
sessions. In this study, the reliability was quantified on the
basis of ten recording sessions.

2. Subjects and methods

2.1. Subjects

Fifteen healthy subjects (13 females and 2 males, mean
age 71.7 years, SD 12.2) were recruited by advertisements
at local retirement homes. The study was open to staff
and residents provided they were over 50 years of age.
The subjects received monetary payment for their partici-
pation. Each subject underwent 10 EEG recordings over
a 2-month period. Written informed consent was obtained
from the participants and the study was approved by the
National Bioethics Committee.
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2.2. EEG recording

The EEGs were obtained with the Nervus system (Tau-
gagreining hf, Iceland). The 10–20 system of electrode
placement was used with electrodes placed at Fp1, Fp2,
F3, F4, F7, F8, Fz, T3, T4, T5, T6, A1, A2, C3, C4, Cz,
P3, P4, Pz, O1, O2 and Oz with Fpz as reference. Two
bipolar EOG channels were also recorded to monitor ocu-
lar artifacts. The sampling rate was 512 Hz and impedance
was kept below 10 kX. The EEG was recorded for 3 min in
the resting, eyes closed condition. The subjects were alerted
in case they became visibly drowsy. The Nervus Reader
software was used to manually score the recordings for
artifacts. The raw EEG together with artifact data were
exported into the Matlab environment (The MathWorks,
Natick, MA, USA) where subsequent analysis took place.

2.3. Calculation of qEEG features

In addition to the referential montage (FPZ), the EEG
was reformatted to average reference (AVR), source reference
(SRC) (Nunez, 1981) and an anterior–posterior bipolar
montage (APB): Fp1–F3, Fp1–F7, F7–T3, T3–T5,
T5–O1, F3–C3, C3–P3, Fp2–F4, Fp2–F8, F8–T3, T4–T6,
T6–O2, F4–C4, C4–P4 and P4–O2. After performing chan-
nel derivation, a 50 Hz notch filter was applied, the data
band pass filtered between 0.5 and 40 Hz and downsam-
pled to 256 Hz. To investigate the effects of segment length,
the features were repeatedly calculated using epoch length
of 10, 20, 40, 60, 80, 100 and 120 s.

2.3.1. Power spectral measures

The power spectrum density (PSD) was estimated
using Welch’s averaged modified periodogram method
(Oppenheim and Schafer, 1999) with 2 s blocks, 50%
overlap and a Hanning window. Blocks containing arti-
facts were skipped when averaging the periodograms.
Traditionally the EEG power spectrum is partitioned
into several frequency bands, this partition is ad hoc in
the sense that it has no real biological basis and differs
slightly between authors. Here the following definitions
were used: d (0.5–3.5 Hz), h (3.5–7.5 Hz), a1 (7.5–
9.5 Hz), a2 (9.5–12.5 Hz), b1 (12.5–17.5 Hz), b2 (17.5–
25 Hz) and c (25–40 Hz). For each band, absolute and
relative band power were computed together with the
total power (TP) in the range 0.5–40 Hz. Peak a fre-
quency (PAF), the frequency with the highest power in
the range (7.5–12.5 Hz), median frequency (MF), the fre-
quency below which half of the total power occurs and
spectral entropy (SpEn) (Inouye et al., 1991) were also
determined. Additionally, the following power ratios
were calculated R1 = h/(a1 + a2 + b1) and R2 = (d + h)/
(a1 + a2 + b1 + b2) which were found to be useful for dis-
crimination of AD patients from healthy controls (Ben-
nys et al., 2001) and R3 = h/(a1 + a2) which was found
to be a useful indicator of slow abnormalities (Brunov-
sky et al., 2003).
2.3.2. Regularity measures

Features that quantify the ‘‘regularity’’ of the EEG have
received considerable attention in recent years. The spectral
entropy described previously is one measure of regularity
(more accurately how sinusoidal the signal is), a sine wave
has spectral entropy zero and uncorrelated white noise has
spectral entropy one. Various complexity and entropy mea-
sures have been used to assess the level of sedation and
anesthesia (Ferenets et al., 2006; Zhang et al., 2001), study
regularity in epileptic seizures (Radhakrishnan and Ganga-
dhar, 1998) and analyze the EEG background activity in
patients with Alzheimer’s disease (Abásolo et al., 2005,
2006).

An early attempt to quantitatively describe the EEG are
the so-called Hjorth parameters (Hjorth, 1975), activity
(A), mobility (M) and complexity (C). They are defined
as follows: A = a0, M = (a1/a0)1/2, C = (a2/a1 � a1/a0)1/2

where a0 is the variance of the signal, a1 is the variance
of the first derivative of the signal and a2 is the variance
of the second derivative. From Parseval’s theorem (Oppen-
heim and Schafer, 1999) it follows that activity and total
power are equivalent features.

Approximate entropy (ApEn) introduced by Pincus
(1991) has been widely used in the study of biomedical time
series including the EEG (Radhakrishnan and Gangadhar,
1998; Abásolo et al., 2005; Ferenets et al., 2006). It turns
out that ApEn has significant weaknesses such as strong
dependence on sequence length and poor self-consistency.
These shortcomings are described by Richman and Moor-
man (2000) who proposed an alternative statistic called
sample entropy (SampEn). Given parameters m and r,
SampEn is the negative log likelihood of the conditional
probability that time series of length N having repeated
itself within tolerance r for m points will repeat itself for
m + 1 points (see Appendix A.1). SampEn was calculated
using a free C program available from Physionet
(www.physionet.org), a research resource for complex
physiologic signals. Following Abásolo et al. (2005) the
parameter settings were m = 1 and r = 0.2 times the stan-
dard deviation of the time series.

In work on brain–computer interfacing Roberts et al.
(1998) suggest a temporal entropy measure (svdEn) based
on an embedding space decomposition (see Appendix
A.2). Here the embedding dimension m was set to 20 fol-
lowing (Faul et al., 2005; Roberts et al., 1998).

An algorithmic complexity measure introduced by Lem-
pel and Ziv (1976) has been used for analyzing the regular-
ity of oscillations in physiological data. Applications of
Lempel–Ziv complexity (LZC) to EEG signals include
assessment of the depth of anesthesia (Zhang et al., 2001)
and sedation (Ferenets et al., 2006), differentiating between
eyes open and eyes closed condition (Watanabe et al., 2003)
and analysis of the background activity in Alzheimer’s dis-
ease (Abásolo et al., 2006). For a given finite symbolic
sequence, LZC measures the number of distinct patterns
in the sequence. A detailed description of LZC along with
an illustrative example is given by Zhang et al. (2001). To

http://www.physionet.org
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apply LZC to EEG data the time series has to be reduced
to a symbol sequence. There is no single, correct way to do
this but a common strategy is to use a 0–1 sequence and
partition around the median, i.e., EEG voltage values that
exceed the median voltage get assigned the symbol ‘‘1’’ and
‘‘0’’ otherwise.

The last regularity measure considered here is permuta-
tion entropy (PermEn), recently introduced by Bandt and
Pompe (2002) and used to study epileptic activity (Keller
and Lauffer, 2003; Cao et al., 2004). Following Keller
and Lauffer (2003) the parameter settings were m = 4 and
s = 1. The time series is converted to a symbolic sequence
by counting ordinal patterns which describe up and down
movement of the time series. Permutation entropy is
defined as the Shannon entropy of the resulting symbolic
series (see Appendix A.3).

The complexity and entropy measures were calculated
for 5 s blocks (1280 samples) with 50% overlap and the
results then averaged. Blocks containing artifacts were
excluded from the averaging process.
2.3.3. Coherence measures

The coherence between two EEG signals is a measure of
their synchronization and can be interpreted as an indica-
tor of functional relationship between different brain
regions. The magnitude squared coherence of signals x(t)
and y(t) for frequency f is defined by

Cxyðf Þ ¼
jP xyðf Þj2

P xxðf ÞP yyðf Þ

where Pxx(f) and Pyy(f) are the power spectral densities of
x(t) and y(t) and Pxy(f) is their cross-spectral density. The
coherence function takes values between 0 and 1 and was
estimated using Welch’s averaged periodogram method in
exactly the same way as the power spectral density, ignor-
ing blocks containing artifacts. The resulting features are
the mean coherence in each of the seven frequency bands.
Coherence was calculated for the local anterior, local pos-
terior, far intrahemispheric and far interhemispheric brain
regions as defined in Brunovsky et al. (2003), both from
average and source montages.
2.4. Statistics

To establish that the EEG did not vary systematically
between sessions the data were visually inspected as fol-
lows: For a fixed feature–channel pair (e.g., total power
in P3–O1), the corresponding feature values were plotted
against visits for all the subjects (15 · 10 = 150 points in
all). This was repeated for all derivations and features.
No trend was observed.

The intraclass correlation coefficient ICC(1) (McGraph
and Wong, 1996) was used to quantify reliability in this
study since it involves ten sessions. The ICC is based on
a one-way analysis of variance model and assumes that fea-
ture values are normally distributed. It is defined as follows
ICC ¼ MSbetween �MSwithin

MSbetween þ ðk� 1ÞMSwithin

where MSbetween is the mean square error between subjects,
MSwithin is the mean square error within subjects and k is
the number of sessions. The ICC becomes one when there
is perfect agreement between sessions and zero when the
between subjects error equals the within subjects error. In
rare cases the ICC can become negative, i.e., when the
within subject error exceeds the between subjects error.
Note that heterogeneity in the subject group will lead to in-
creased between subjects error, hence inflate the ICC.
Exact confidence intervals for the ICC are computed as de-
scribed in McGraph and Wong (1996).

Prior to calculating ICC, the feature values were trans-
formed in order to make them approximately normally dis-
tributed. Following (Kondacs and Szabó, 1999) the log
transform was applied to absolute band power. Relative
band power R was transformed using log(R/(1 � R)),
magnitude squared coherence C was transformed with
log(C/(1 � C)) and spectral entropy SpEn using
�log(1 � SpEn). The log transform was found to give
approximate normality for total power, activity and
the power ratios R1, R2 and R3. The remaining features
did not require transforms. In all cases, approximate
normality was assessed using a normal probability plot.

Following Gasser et al. (1985), the average of reliability
scores over all features and derivations was used to mea-
sure the effect of epoch length. The montages were evalu-
ated in the same way. Approximate confidence intervals
for the averaged reliability values were obtained with the
bias-corrected accelerated bootstrap (Efron and Tibshirani,
1994).
2.5. Nonlinear associations

The nonlinear association measure (Pijn and da Silva,
1993) was used to assess the correlation between different
qEEG features in an attempt to explain why apparently
unrelated features exhibited similar reliability. This mea-
sure has previously been used to quantify the degree and
direction of functional coupling between neuronal popula-
tions (Bartolomei et al., 2004), to study the functional
dependence between septal and temporal signals in a model
of temporal lobe epilepsy (Kalitzin et al., 2005) and to ana-
lyze the cortical involvement in the generation of motor sei-
zures (Kalitzin et al., 2007).

The association measure h2
XY quantifies the (nonlinear)

relationship between two sequences X and Y by consider-
ing Y as a piecewise linear function of X and measuring
the reduction in variance obtained by predicting Y accord-
ing to the fitted curve. Each sequence consists of values of a
single feature, aggregated over all subjects, channels and
visits. Ten line segments were used to construct the regres-
sion curve. Values of h2

XY close to one suggest a strong rela-
tionship between X and Y, values close to zero indicate
independence. Considering X as a function of Y instead
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may result in a different value of the association measure
(asymmetry). To quantify the association between features
X and Y, the average was used, h2 ¼ ðh2

XY þ h2
YX Þ=2.

3. Results

The reliability values for all power spectral and regular-
ity measures are presented as topographic maps in Fig. 1.
The values are based on 40 s epochs and the average mon-
tage. The EEGLAB package (Delorme and Makeig, 2004)
was used to create the maps. Reliability values for selected
channels are presented in Table 1. Table 2 shows 95% con-
fidence intervals for absolute band power in a single chan-
nel and indicates the uncertainty in the point estimates.

3.1. Power spectral measures

The effects of epoch length and montage on reliability
are illustrated for absolute band power in Fig. 2. Also
shown are 95% bootstrapped confidence intervals. The cor-
responding figures for relative band power and the derived
PSD features basically show the same pattern. Reliability
was highest for AVR and lowest for SRC and APB with
FPZ in between. Reliability increased with epoch length
but levels off at 40 s, longer epochs gave only marginal
improvement. Reliability across channels was relatively
stable, parietal, occipital, Fz and Cz were most reliable.
Reliability for absolute and relative band power was simi-
lar, highest reliability was observed for the h band, fol-
lowed by a and b bands, d and c bands were least
reliable. Of the derived features, R1 � R3 had the highest
reliability, spectral entropy and MF the lowest.
Fig. 1. Topographic maps of reliability across features and channel location
(bottom row), blue color represents low values and red represents high values
3.2. Regularity measures

Montage had the same effects as before, AVR was the
most reliable montage, followed by FPZ and then by
SRC and APB. Reliability increased with epoch length
but levelled off at 40 s. Variation in reliability across
channels was similar for all the measures,, with parietal,
Cz and Fz derivations being most reliable. Reliability of
the regularity measures is comparable to that of relative
d and c band power, i.e., lower than for most PSD mea-
sures. To investigate whether this is simply a result of
averaging (5 s epochs instead of 2) the reliability calcula-
tions were repeated using 2 s epochs. The effect was min-
imal, suggesting that the difference in reliability
compared to PSD measures is not simply due to the
effects of averaging. Using different embedding dimen-
sions, m = 2 and m = 5 for SampEn and m = 5 and
m = 10 for svdEn did not have a noticeable effect on
reliability.

3.3. Coherence measures

Reliability levelled off at 40 s with the average mon-
tage more reliable than the source montage. Reliability
for the mean coherence measures is depicted in Fig. 3.
Each channel derivation is represented by a single line,
the color indicating the reliability; below 0.4 (blue),
0.4–0.55 (green), 0.55–0.7 (orange) and above 0.7 (red).
Reliability was highest for the a bands, followed by h
and b bands, d and c bands had lowest reliability. The
local posterior area was slightly less reliable than the
other areas.
s for power spectral measures (top three rows) and regularity measures
.



Table 1
Reliability, 40 s epochs and AVR montage

F3 F4 C3 C4 P3 P4 O1 O2 Mean

d 0.49 0.51 0.56 0.67 0.69 0.48 0.81 0.79 0.62
h 0.90 0.91 0.87 0.87 0.90 0.87 0.91 0.88 0.89
a1 0.85 0.84 0.76 0.67 0.78 0.81 0.83 0.84 0.80
a2 0.86 0.86 0.86 0.81 0.88 0.88 0.87 0.86 0.86
b1 0.73 0.76 0.87 0.84 0.86 0.84 0.82 0.82 0.82
b2 0.67 0.69 0.90 0.80 0.91 0.89 0.85 0.81 0.82
c 0.41 0.55 0.65 0.46 0.83 0.69 0.69 0.60 0.61

Mean 0.70 0.73 0.78 0.73 0.84 0.78 0.83 0.80 0.77

%d 0.54 0.65 0.59 0.71 0.70 0.74 0.74 0.74 0.67
%h 0.91 0.88 0.94 0.88 0.95 0.94 0.91 0.90 0.91
%a1 0.83 0.83 0.77 0.70 0.78 0.79 0.82 0.80 0.79
%a2 0.84 0.83 0.86 0.82 0.89 0.85 0.85 0.82 0.84
%b1 0.83 0.79 0.91 0.89 0.90 0.90 0.92 0.89 0.88
%b2 0.76 0.70 0.88 0.86 0.90 0.89 0.92 0.88 0.85
%c 0.52 0.36 0.75 0.53 0.85 0.79 0.79 0.66 0.66

Mean 0.75 0.72 0.81 0.77 0.85 0.84 0.85 0.81 0.80

TP 0.76 0.77 0.77 0.70 0.85 0.83 0.89 0.88 0.80
PAF 0.74 0.77 0.66 0.66 0.73 0.74 0.61 0.62 0.69
MF 0.27 0.61 0.65 0.44 0.67 0.69 0.73 0.35 0.55
SpE 0.40 0.52 0.46 0.63 0.76 0.78 0.79 0.68 0.63
R1 0.95 0.94 0.94 0.93 0.94 0.93 0.93 0.92 0.93
R2 0.83 0.83 0.87 0.90 0.89 0.89 0.91 0.90 0.88
R3 0.95 0.94 0.93 0.92 0.94 0.93 0.93 0.92 0.93

Mean 0.70 0.77 0.75 0.74 0.83 0.83 0.83 0.75 0.77

A 0.66 0.67 0.69 0.68 0.83 0.80 0.88 0.85 0.76
M 0.46 0.43 0.73 0.56 0.86 0.83 0.80 0.63 0.66
C 0.68 0.58 0.78 0.65 0.77 0.73 0.67 0.58 0.68
SampEn 0.49 0.42 0.76 0.64 0.86 0.83 0.83 0.70 0.69
svdEn 0.55 0.36 0.77 0.66 0.89 0.84 0.86 0.75 0.71
PermEn 0.57 0.45 0.75 0.52 0.83 0.77 0.75 0.63 0.66
LZC 0.53 0.45 0.74 0.65 0.87 0.83 0.82 0.70 0.70

Mean 0.56 0.48 0.75 0.62 0.84 0.80 0.80 0.69 0.69
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4. Discussion

4.1. Power spectral measures

Compared to AVR the other montages had lower over-
all reliability which is consistent with Kondacs and Szabó
(1999). This finding is not surprising since the potential dif-
ference between a single electrode and the average over all
channels will have lower variance than the potential differ-
ence between two electrodes (FPZ and ABP) or the average
of only 3–5 (SRC). The largest reliability differences
between AVR and the other montages were found in the
Table 2
95% Confidence intervals on reliability illustrated for channel F3 and
absolute band power

F3-AV d h a1 a2 b1 b2 c

Value 0.49 0.90 0.85 0.86 0.73 0.67 0.41

Lower 0.30 0.82 0.73 0.76 0.56 0.49 0.23
Upper 0.72 0.96 0.93 0.94 0.87 0.84 0.66
fronto-polar and frontal derivations. The FPZ reference
montage was found to have slightly higher reliability than
the longitudinal APB montage which is in agreement with
Salinsky et al. (1991). For the FPZ montage, reliability was
low frontally but increased over the parietal and occipital
areas.

Reliability of the PSD measures increased for up to 40 s
epochs whereas Gasser et al. (1985) found practically no
improvement after 20 s. In Salinsky et al. (1991), 20 s was
found to be nearly as reliable as 60 s for test–retest correla-
tions but a different criteria gave markedly higher variabil-
ity for 20 s epochs than for 60 s epochs. In both Gasser
et al. (1985) and Salinsky et al. (1991) elaborate methods
were used to reduce the effect of artifacts. Absolute and rel-
ative band power had similar reliability which is in agree-
ment with Gasser et al. (1985) and variability over
channels is also modest. The d and c bands were less reli-
able than the other bands.

The low reliability of MF and moderate reliability of
PAF are in contrast with Salinsky et al. (1991); Kondacs
and Szabó (1999) which found both measures to be highly
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reliable. The discrete nature of the measures may be a con-
tributing factor here, small variation in power may lead to
relatively large (0.5 Hz) jumps in the frequency estimates.
4.2. Regularity measures

The regularity measures were found to be slightly less
reliable than PSD features in most cases. To the best of
our knowledge, the reliability of regularity measures has
not received much attention in the EEG literature. Spectral
δ θ α
1

α
2

Fig. 3. Coherence reliability: below 0.4 (blue), 0.4–0.55 (green), 0.55–0.7 (orang
far intrahemispheric and far interhemispheric.
entropy was studied in Kondacs and Szabó (1999) and
found to have moderate stability compared to other PSD
features.

When selecting the epoch length there is a trade-off
between obtaining sufficiently reliable feature estimates
and fluctuations in alertness of the subjects which will have
severe effects on the parameter values. We recommend that
for the regularity measures studied here at least 40 s epochs
are used, although this value may depend on the block size
and whether block overlap is used or not.

The reliability of mobility, SampEn, svdEn and LZC
was quite similar. This is somewhat surprising. Although
they are all measures of ‘‘regularity’’, the measures have
different theoretical underpinnings and the algorithms for
their computation do not seem to have a lot in common
at first glance.

Scatter plots can be used to reveal relationship between
two features. The symmetric scatter plot matrix in Fig. 4
contains all pairwise scatter plots for the regularity features
and the corresponding values of the association measure
h2. Each scatter plot was generated by pooling feature val-
ues for all subjects, visits and channels (15 · 10 · 20 = 3000
points). Perfect agreement between features i and j would
show up as a straight line in row i, column j. If there were
no correlation between the two features, the corresponding
scatter plot would display a ‘‘cloud’’ of points. Activity
appears to have the least in common with the other mea-
sures. Complexity seems to be mostly unrelated with the
other measures except PermEn. On the other hand, mobil-
ity, sample entropy, svd entropy and Lempel–Ziv complex-
ity appear to be quite related. These four measures were
quite strongly associated with relative c power (h2 > 0.8),
more so than with spectral entropy.
β
1

β
2

γ

e) and above 0.7 (red). From top to bottom; local anterior, local posterior,
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Fig. 4. Scatter plot matrix of the complexity and entropy features and corresponding values of the nonlinear association measure h2.
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Note that apparent relationships (or lack thereof)
between different measures may depend strongly on the
choice of parameters (e.g., values of m and s in case of Per-
mEn). Mobility is such a simple parameter to compute and
understand it is therefore recommended as a benchmark in
further studies involving these features.

4.3. Coherence measures

We recommend to use average reference and at least
40 s epochs when computing coherence. Reliability of
coherence was found to be lower than for absolute and
relative band power (and in fact lower than most of
the features included in the study). Coherence was most
reliable in the a bands and least reliable in the d and c
bands. These findings are consistent with previous studies
(Gasser et al., 1987; Kondacs and Szabó, 1999). The
lower reliability of coherence when compared to PSD
measures can be explained in part by the greater statisti-
cal variability of coherence and the possibility that syn-
chronization between brain regions is significantly
affected by the mental state of the subject (Gasser
et al., 1987). The ability of coherence to detect brain
coupling may be offset by the apparent low reliability
in clinical applications.

Recently, numerous synchronization measures have
been proposed in the EEG literature (for an overview,
see Quiroga et al., 2002). The low reliability of coher-
ence observed in this study would suggest that further
studies into the stability of these new parameters are
needed.
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Appendix A

A.1. Calculation of sample entropy

Given a scalar time series x(t) of length N, a time-delay
embedding of x(t) is obtained by forming delay vectors

xmðiÞ ¼ ½xðiÞ; xðiþ sÞ; . . . ; xðiþ ðm� 1ÞsÞ�T

for i = 1, . . .,N � (m � 1)s where m is the embedding
dimension and s is the time delay.

To compute SampEn let s = 1 and assume that param-
eters m and r are fixed.

Define distance between two vectors as

d½xmðiÞ; xmðjÞ� ¼ max
06k6m�1

½jxðiþ kÞ � xðjþ kÞj�

Compute the probability that two sequences will match for
m points

BmðrÞ ¼ 1

N� m

XN�m

i¼1

Bm
i ðrÞ

where Bm
i ðrÞ ¼ ðN� m� 1Þ�1 times the number of vectors

xmðjÞ within distance r of xmðiÞ; j ¼ 1; . . . ;N� m; j 6¼ i.
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The conditional probability Am(r) that two sequences will
match for m + 1 points is defined analogously

AmðrÞ ¼ 1

N� m

XN�m

i¼1

Am
i ðrÞ

where Am
i ðrÞ ¼ ðN� m� 1Þ�1 times the number of vectors

xmþ1ðjÞ within distance r of xmþ1ðiÞ; j ¼ 1; . . . ;N� m;
j 6¼ i. Now

SampEnðm; rÞ ¼ � ln
AmðrÞ
BmðrÞ :

Commonly used values for the parameters are m = 1, . . ., 5
and r = 0.1–0.2 times the standard deviation (STD) of the
original time series.

A.2. Calculation of svd entropy

Computation of svdEn proceeds as follows: First an
embedding matrix is constructed from the m-dimensional
time delay vectors with s = 1

X ¼ ½xmð1Þ; xmð2Þ; . . . ; xmðN� ðm� 1ÞÞ�T

Compute the singular value decomposition X = USVT. The
diagonal matrix S contains the singular values,
r1 P r2 P � � �P rm P 0. The entropy of the singular value
spectrum is defined as

svdEn ¼ �
Xm

i¼1

r̂i log r̂i

where r̂i are the normalized singular values r̂i ¼ ri=
Pm

j¼1rj.

A.3. Calculation of permutation entropy

For a given embedding dimension m, time delay s and
time i, arrange the elements of the time delay vector xmðiÞ
in increasing order

~xmðiÞ ¼ ½xðiþ j0sÞ 6 xðiþ j1sÞ 6 � � � 6 xðiþ jm�1sÞ�
T

where (j0, j1, . . ., jm�1) is called an ordinal pattern and is a
permutation of (0, 1, . . .,m � 1). To ensure a unique re-
sult in case of equalities, set jk�1 < jk when
x(i + jk�1s) = x(i + jks). Now any ~xmðiÞ is uniquely
mapped onto (j0, j1, . . ., jm�1). Each ordinal pattern can
be considered as one of m! distinct symbols. Denote
the relative frequency of the distinct symbols by
P1,P2, . . .,PK where K 6 m!. The (normalized) permuta-
tion entropy for x(t) is defined as

PermEn ¼ � 1

logðm!Þ
XK

j¼1

P k log P k

and takes values between 0 and 1. Different values of the
time delay provide different details about the time series.
Bandt and Pompe (2002) use s = 1 and recommend
m = 3, . . ., 7.
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