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Abstract 

Genome-scale metabolic reconstructions have found widespread use in scientific 

research as structured representations of knowledge about an organism’s 

metabolism and as starting points for metabolic simulations. With few simplifying 

assumptions, genome-scale models of metabolism can be used to estimate intra-

cellular reaction rates. However, with the rapid increase in the availability of 

genome-scale data, there is ample opportunity to refine the predictions made by 

metabolic models, by integrating experimental data. In this chapter, we review 

different methods for combining genome-scale metabolic models with genome-

scale experimental data, such as transcriptomics, proteomics and metabolomics. 

Integrating experimental data into the models generally results in more precise 

and accurate simulations of cellular metabolism. 

1. Reconstruction and analysis of metabolic networks 

To describe and understand the functioning of living cells, it is essential to study 

metabolism. The chemical conversion of nutrients into energy, biomass and secondary 

products is one of the main components of the cellular phenotype, and a defining 

characteristic of life. Since the metabolic capabilities of an organism are ultimately 

determined by its genotype, advances in genome sequencing technologies during the 

last two decades have had a substantial impact on our knowledge about metabolism. 

With a fully annotated whole genome sequence of an organism, it is feasible to compile a 

database of all the biochemical reactions that can be catalyzed inside the cell. Besides a 

list of reactions and their stoichiometries, such a database, called a genome-scale 

metabolic reconstruction, often includes information that links each reaction to the 

genes encoding the enzymes that catalyze it (Price, Reed and Palsson, 2004). The 



earliest published genome-scale reconstructions were for organisms with small 

genomes such as Haemophilus influenzae (Schilling and Palsson, 2000) and Escherichia 

coli (Edwards and Palsson, 2000), but reconstructions for more complex organisms 

including Saccharomyces cerevisiae (Förster et al., 2003), Arabidopsis thaliana (de 

Oliveira Dal’Molin et al., 2010) and Homo sapiens (Duarte et al., 2007) have followed 

since. Revised versions of genome-scale metabolic reconstructions are sometimes 

published when new genes are discovered or annotated functions of known genes are 

updated. 

A genome-scale metabolic reconstruction allows systematic analysis of the metabolic 

network of an organism, and can even form a starting point for whole-cell simulations 

(Orth, Thiele and Palsson, 2010; Karr et al., 2012). In order to perform such analyses, the 

genome-scale reconstruction must be formulated as a mathematical model, e.g. in the 

form of a system of differential equations, 

𝑑𝒙

𝑑𝑡
= 𝑺 ∙ 𝒗(𝒙, 𝒌) (1) 

Here S denotes the stoichiometric matrix, derived from the genome-scale reconstruction 

with element sij denoting the stoichiometric coefficient of metabolite i in reaction j, and x 

is a vector of concentrations of all metabolites in the cell. Reaction rates, v, are a function 

of current metabolite concentrations and kinetic parameters, k. Given initial metabolite 

concentrations, the system of differential equations is readily solved numerically. While 

the formulation is conceptually simple, its use on the genome-scale has been impeded by 

limited knowledge of the many kinetic parameters (McCloskey, Palsson and Feist, 2013). 

To avoid the issue of unknown kinetic parameters, constraint-based metabolic 

modeling methods are often used instead. Constraint-based modeling imposes 

constraints on the system and finds metabolic reaction rates that are consistent with 

these constraints. The most central constraint is the assumption of steady-state, where 

the concentrations of internal metabolites are assumed to be constant. This corresponds 

to setting the left-hand side of Equation 1 to zero and results in a system of linear 

equations, 

𝑺 ∙ 𝒗 = 𝟎 (2) 

that can be solved for the reaction rates (also known as fluxes), v (Orth, Thiele and 

Palsson, 2010). The kinetic parameters are not accounted for explicitly in constraint-

based models, which only require the stoichiometric matrix to be known. For most 

genome-scale reconstructions, the system of equations is underdetermined, meaning 



that an infinite number of flux solutions exist. One way to address this issue is to identify 

a solution that optimizes a specific objective. This is based on an assumption that the 

cell has evolved to maximize some biological objective, e.g. production of ATP or 

production of biomass. Production of biomass is modeled through a bulk-reaction that 

consumes biomass constituents such as nucleotides and amino acids in empirically 

determined ratios (Orth, Thiele and Palsson, 2010). This method is known as flux 

balance analysis (FBA) and has become the foundation of most work in constraint-

based metabolic modeling. Performing flux balance analysis requires the solution of a 

linear optimization problem. The result is a set of reaction rates that satisfy the 

constraints of the system and is consistent with the defined biological objective. 

Despite the simple formulation and strong assumptions, FBA has proven useful in a 

number of metabolic modeling applications, to predict the rates of metabolic reactions, 

typically called the flux distribution (McCloskey, Palsson and Feist, 2013). It can been 

used for instance to predict essential metabolic genes, i.e. genes that are required for the 

synthesis of one or more biomass constituents. This is done by simply removing 

corresponding reactions from the model and performing FBA. If the maximal biomass 

flux is zero in the knockout model, the gene is expected to be essential. Comparisons 

with experimental data from single-knockout studies have shown good correspondence 

with the results of FBA-based essentiality predictions in E. coli and other bacteria such 

as Pseudomonas aeruginosa (Edwards and Palsson, 2000; Oberhardt et al., 2008). In 

other organisms, e.g. S. cerevisiae, predictions of essentiality are less accurate, and for 

multiple knockouts in particular, there is only a very low correlation between 

experimental data and FBA predictions (Heavner and Price, 2015). 

The assumption of maximization of biomass production as a metabolic objective is often 

reasonable for microorganisms during exponential growth, but it will clearly not hold 

for most mammalian cells or other multicellular organisms whose evolutionary 

pressure has selected for far more complex traits than simply growth at the cellular 

level. In place of FBA, Markov chain Monte Carlo (MCMC) methods can be used to 

uniformly sample the feasible steady-state flux space described by Equation 2. MCMC 

methods provide an estimate of the joint probability distribution of fluxes and do not 

depend on a pre-specified biological objective. The applications of random sampling 

methods include the analysis of red blood cells under storage conditions (Bordbar et al., 

2016), aspirin resistance in platelets (Thomas et al., 2015), transcriptional regulation in 

human adipocytes (Mardinoglu et al., 2014) and in bacterial communities in the human 

gut (Shoaie et al., 2013), as well as the metabolic re-wiring that takes place in epithelial 



to mesenchymal transition during the development of breast cancer (Halldorsson et al., 

2017). 

2. Constraining metabolic models with transcriptomics and 

proteomics data 

Although mass balance is an essential principle, metabolism is constrained by other 

factors and physical principles as well. FBA assumes that the cell can use all metabolic 

reactions at a given time in the combination that gives the highest biomass production, 

however, this is contradicted by the fact that only a proportion of an organism’s genes 

will be transcriptionally active at the same time. Thus further constraints can be 

imposed on the model by leveraging information about the transcriptional state of the 

cell. This can be used to create context-specific models from generic models, such as the 

generic human reconstruction Recon1 (Duarte et al., 2007), as well as to improve the 

accuracy of flux predictions. The simplest realization of this idea utilizes the fact that an 

enzyme cannot catalyze any reaction flux if its encoding gene is not expressed. Reactions 

catalyzed by genes with transcript levels below a defined threshold can thus be forced to 

be inactive by removing them from the model. Flux distributions obtained with such a 

constrained model were found to be more strongly correlated to experimentally 

measured fluxes in S. cerevisiae compared to an unconstrained model (Åkesson, Förster 

and Nielsen, 2004). More sophisticated algorithms minimize the difference between the 

predicted flux distribution and the gene expression data. The Gene Inactivity Moderated 

by Metabolism and Expression (GIMME) algorithm (Becker and Palsson, 2008) finds flux 

values which minimize the utilization of reactions with low expression levels, in order to 

meet pre-specified metabolic requirements such as growth. The iMAT method 

developed by Shlomi and coworkers (Shlomi et al., 2008) alleviates the need for a pre-

specified cellular objective and is therefore suitable for analyzing mammalian cells and 

tissues. The method partitions gene expression values into three groups, corresponding 

to high, moderate and low expression and then maximizes the number of reactions with 

flux levels in agreement with the expression states. This enabled identification of tissue-

specific metabolic activities in different human tissues, and the construction of tissue-

specific models of human metabolism. An extension of iMAT was used to construct a 

model of cancer metabolism from Recon1 and expression data from cancer cell lines in 

the NCI-60 collection. The cancer model was then used to identify several cytostatic 

drug targets, and generate a list of potential selective anti-cancer treatments (Folger et 

al., 2011).  



Since Åkesson and coworkers first used gene-expression data to constrain metabolic 

models, a large number of methods that integrate expression data and flux predictions 

have been published. An evaluation of many of these methods, by their ability to predict 

flux distributions in E. coli and S. cerevisiae, showed that none of them performed 

significantly better than parsimonious FBA, an extension of FBA that finds the flux 

distribution with the smallest sum of fluxes that can support the optimal objective value 

(Machado and Herrgård, 2014). This suggests that gene transcription levels do not 

correlate strongly with reaction fluxes, at least in microbial cells, which is not surprising 

considering that translational efficiency, post-translational modifications and allosteric 

regulation all have an effect on fluxes as well. 

A step closer to the actual reactions than mRNA abundance is protein concentration. A 

certain correlation between mRNA and protein concentration is to be expected (Gry et 

al., 2009), and several methods for integrating gene expression data into metabolic 

models can indeed use protein abundance data with the same algorithms, simply by 

replacing gene expression thresholds with protein abundance thresholds (Becker and 

Palsson, 2008; Machado and Herrgård, 2014). However, there have also been attempts 

to more explicitly incorporate proteomics data into the modeling frameworks. A central 

component of enzyme kinetics is the concept of the catalytic capacity of an enzyme. Each 

enzyme molecule can only perform a certain number of conversions per second; an 

increased flux will therefore require a larger number of enzymes at some point. The 

maximum possible flux, represented by the Vmax parameter, can be calculated from the 

enzyme concentration and catalytic turnover number, kcat 

𝑉௫ = 𝑘௧ ∙ [𝐸] (3) 

If the catalytic turnover parameters are known, this relationship can be used to 

constrain fluxes using protein concentration data. In the GECKO modeling framework 

(Sánchez et al., 2017) a constraint is added for each enzyme, representing the enzyme’s 

degree of utilization, where the upper bound is set to the measured enzyme 

concentration. The utilization of an enzyme is obtained by summing 𝑣/𝑘௧  for all 

reactions catalyzed by that enzyme. Using GECKO with a proteomics dataset for S. 

cerevisiae, Sanchez and coworkers showed that the space of possible fluxes was reduced 

considerably by excluding all flux distributions that were not consistent with the 

observed enzyme levels. On the other hand, the fluxes predicted for S. cerevisiae grown 

in glucose limited minimal medium, did not have a significantly smaller error, compared 

to experimentally measured fluxes, than those predicted with FBA. It is possible 

however, that the advantage of using proteomics data will be larger in cases where the 



assumption of maximal growth is not valid, e.g. under stress conditions or in genetically 

perturbed strains. GECKO can also be used in the absence of proteomics data by 

imposing a single overall constraint on the total enzyme mass. This resulted in more 

accurate predictions of maximal growth rates on a wide range of different carbon 

sources, for which FBA tends to overestimate growth rate. Another interesting growth 

effect that was captured by including an overall protein constraint is the shift from 

respiration to fermentation at high growth rates. This overflow metabolism, also known 

as the Crabtree effect in yeast (Crabtree, 1929) and the Warburg effect in cancer cells 

(Warburg, Wind and Negelein, 1927), cannot be captured by FBA, where simply the flux 

distribution with the highest biomass yield is found, independently of growth rate. The 

overflow effect is most likely caused by respiratory enzymes having a higher proteome 

cost than fermentative enzymes (Basan et al., 2015), which means that at high growth 

rates protein allocation becomes limiting and fermentation becomes more efficient even 

though it has a lower energy/carbon yield. Overflow metabolism has been modeled e.g. 

in E. coli (Basan et al., 2015), S. cerevisiae (Sánchez et al., 2017) and cancer cells (Shlomi 

et al., 2011), by different models with the common trait of somehow constraining the 

proteome. 

The causes of the Warburg effect in cancer cells were studied using Recon1 by placing a 

constraint on total enzyme concentration to account for enzyme solvent capacity 

(Shlomi et al., 2011). To compute the contribution of each enzyme to the total 

concentration, an estimate of the enzyme turnover number was required. Estimates for 

15% of the reactions could be obtained from biochemical databases, the rest was 

assigned a fixed value of 25/s. Using FBA and random sampling, the Warburg effect was 

shown to be a consequence of metabolic adaptations to increase biomass productivity. 

Further analysis revealed the preference of cancer cells to take up glutamine instead of 

other amino acids. 

Resource allocation between cellular processes in Bacillus subtilis was recently analyzed 

using a method that incorporates genome-wide protein quantification data and 

extracellular nutrient concentrations with a metabolic reconstruction (Goelzer et al., 

2015). The method, Resource Balance Analysis (RBA), links flux to enzyme abundance, 

assuming a relationship similar to Equation 3, while incorporating information on 

protein activity and protein localization. The use of RBA is fairly involved compared to 

the methods described earlier and requires specification of a large number of 

parameters. The parameters were partly obtained from Uniprot and partly inferred 

from data. RBA accurately predicted the allocation of resources in B. subtilis over a wide 



range of conditions. In vivo knockouts of enzymes which were expressed but predicted 

to have zero flux in the model resulted in significantly increased growth (Goelzer et al., 

2015). This suggests that the method may be useful for constructing minimal cell 

factories, e.g. for protein production. 

3. Models of metabolism and macromolecular expression 

The previously described methods for combining omics data and metabolic models are 

mostly based on heuristically formulated constraints and/or objectives. When the 

measured quantities – such as mRNA and protein abundances – are not explicitly 

accounted for in the modeling framework, they cannot be seamlessly integrated into it. 

To address this problem, an extended modeling framework that explicitly models the 

expression of macromolecules, such as RNA and protein, has been developed. 

Construction of such models of metabolism and expression (ME-models) began with 

the reconstruction of the macromolecular expression network of E. coli, analogously to 

the metabolic network (Thiele et al., 2009). Transcription of a given gene to produce 

mRNA is modeled as a reaction consuming nucleotides in proportions consistent with 

the specific sequence, and similarly translation is modeled as a reaction consuming 

charged tRNAs while producing protein and uncharged tRNAs. In order to model how 

metabolic catalysis is dependent on translation of a specific protein and how translation 

of a protein is dependent on transcription of its gene to mRNA, these different reactions 

must be coupled (Thiele et al., 2009; Lerman et al., 2012). A certain quantity of an 

enzyme can only catalyze a limited reaction flux and Equation 3 can be rearranged to 

enable calculation of the minimum amount of enzyme required to catalyze a given flux 

[𝐸] ≥
𝑣

𝑘௧
(4) 

Equation 4 represents a constraint that can be used to couple metabolic reactions to the 

enzymes that catalyze them. Identical constraints can be formulated for ribosomes and 

mRNA in translation reactions and for RNA-polymerase in transcription reactions. A 

constraint-based modeling framework, however, does not model concentrations of 

metabolites (or enzymes) and is thus not directly compatible with such constraints. To 

circumvent this it is necessary to account for growth-related dilution. In a growing cell, 

metabolite pools are continuously diluted, because of the expanding intracellular 

volume, by a rate equal to the product of the growth rate and metabolite concentration. 

This means that in steady-state, catalysis of a reaction requires that the catalyzing 

enzyme be produced at a rate proportional to the growth rate. Enzymatic conversion of 

compound A into compound B by enzyme E thus becomes (Lloyd et al., 2017): 



𝐴 +
𝜇

𝑘௧
𝐸 → 𝐵 (5) 

In FBA the requirement of enzyme production is modeled through the composition of 

the biomass reaction, but since this reaction is determined a priori¸ FBA cannot model 

how biomass composition changes under different growth rates and conditions. With 

ME-models the empirical biomass reaction is replaced by explicitly modeling the 

relationship between metabolism and macromolecular expression. ME-models can thus 

directly predict the expression levels of different proteins, which can be compared with 

–omics datasets. A ME-model of the thermophilic bacterium Thermotoga maritima 

(Lerman et al., 2012), found moderate correlations between predicted and 

experimentally measured mRNA profiles (r= 0.54), protein expression profiles (r = 

0.57), as well as proteome amino acid composition (r = 0.79). A ME-model of E. coli 

showed improved prediction of growth rates in different nutrient conditions compared 

to FBA (Thiele et al., 2012), and could accurately predict several internal fluxes (O’Brien 

et al., 2013). Additionally, since ME-models explicitly include the cost of producing the 

enzymes required for various pathways, they implicitly limit the total proteome size and 

thus also capture metabolic overflow effects, such as the acetate overflow metabolism in 

E. coli (O’Brien et al., 2013). 

Whereas traditional constraint-based metabolic models include, and can thus directly 

predict, growth rate, uptake and secretion rates and internal fluxes, ME-models can 

additionally predict expression profiles and proteome composition, and thus they can 

also be directly constrained by expression and proteomics data. Because of this, ME-

models represent an intuitive and theoretically justified method of integrating 

transcriptomics and proteomics data into metabolic models. They have not yet found 

broad usage in the metabolic modeling community, presumably because of the time it 

takes to run simulations (several orders of magnitude higher than with FBA), and the 

lack of related model and software infrastructure, but these issues are continuously 

being addressed (Yang et al., 2016; Lloyd et al., 2017). 

4. Augmenting models with metabolomics data 

In a discussion of data integration in metabolic models, it is impossible not to mention 

metabolomics. Different analytical methods, e.g. enzymatic assays, chromatography and 

mass spectrometry, can be used to take snapshots of the cellular metabolism with 

varying resolution, coverage, precision and throughput. However, they all provide useful 

information about the concentrations of metabolite pools in the cell. One of the earliest 

uses of metabolomics data to improve metabolic modeling was metabolic flux analysis 



(MFA), which utilizes time-course metabolite concentration data from cultures fed with 

isotopically labeled substrates to infer flux values in the metabolic network 

(Stephanopoulos, 1999; Sauer, 2006). This is done by monitoring how the isotopes, e.g. 

13C or 15N, spread to downstream metabolite pools over time. The advantage of this 

method is that the resulting fluxes can be used directly to constrain metabolic models or 

to compare the validity of different simulation methods. However, MFA is labor- and 

cost intensive and works best on a smaller subset of the entire metabolic network, 

typically just the central carbon metabolism (Antoniewicz, 2015; Gopalakrishnan and 

Maranas, 2015). 

Changes in extracellular metabolite concentrations over time can be used to estimate 

uptake and secretion rates and constrain the flux space. However, since constraint-

based modeling frameworks model fluxes under an assumption of steady-state, internal 

metabolite concentration data at a single time point without isotopic labeling cannot be 

directly utilized. Despite this, metabolomics data can still be used to either constrain the 

models or to provide new insights in combination with the simulation results. In order 

to model cells that are not in steady-state, such as human blood cells undergoing 

physiological changes during storage, Bordbar and coworkers devised a method called 

unsteady-state FBA (Bordbar et al., 2017). Using time-course metabolomics they 

determined the rate of accumulation or depletion for internal metabolites, which was 

then modeled by adding source and sink reactions to the metabolic model. These 

reactions were then constrained to have fluxes corresponding to the experimentally 

determined rates of concentration changes. Subsequent MFA revealed that the fluxes 

predicted with this method were more accurate than those obtained by regular FBA. 

Aside from enforcing steady state, a commonly used constraint in constraint-based 

models is to force certain fluxes to only go in one direction. This is straightforward for 

some reactions whose thermodynamics make it practically irreversible under biological 

conditions. Other reactions are closer to equilibrium and can go in both directions 

depending on specific conditions. The spontaneous direction of a reaction can be 

calculated by the formula 

Δ୰𝐺 = Δ୰𝐺° + 𝑅𝑇 𝑙𝑜𝑔(𝑄) (6) 

If the left-hand side (the reaction Gibbs free energy) is negative, the reaction will 

proceed spontaneously in the forward direction, while it will proceed spontaneously in 

the reverse direction if the reaction Gibbs free energy is positive. Δ୰𝐺° is the reaction 

Gibbs free energy under standard conditions, RT is the gas constant times the absolute 

temperature and Q is the reaction quotient, containing the concentrations of the 



reaction products and substrates. The standard Gibbs free energy must in principle be 

determined experimentally, but in most cases it can be calculated from the structure of 

the participating metabolites and already known reaction Gibbs free energies for other 

reactions (Noor et al., 2013). This means that a dataset of metabolite concentrations can 

be used to constrain reactions to a specific direction depending on the specific metabolic 

conditions, reducing the space of feasible fluxes significantly (Soh and Hatzimanikatis, 

2014). In many simulated growth conditions, it can be sufficient simply to constrain 

reaction directionalities according to the most common mode of operation without 

regard to actual metabolite concentrations. Some reactions however, occur in the 

unconventional direction under extreme conditions, such as very high CO2 

concentrations. In such cases using thermodynamics and metabolite data to inform 

reaction directionalities will be particularly beneficial and can lead to more accurate 

simulations (Soh, Miskovic and Hatzimanikatis, 2012). 

Constraint-based simulations can also be combined with metabolomics data in another 

way. In addition to calculating a flux distribution, simulating a constraint-based model 

also provides so-called shadow prices. Each shadow price is linked to a metabolite and 

reflects how much the objective function, e.g. growth, could be improved if the model 

were allowed to get some of that metabolite “for free”. In other words a shadow price is 

a measure of how limiting a given metabolite’s mass balance is for the objective 

function. Depending on the algorithm used to solve the FBA problem, shadow prices are 

either a byproduct of the solution process or can be obtained with modest 

computational effort. 

Zampieri and coworkers investigated the evolution of antibiotic resistance in E. coli 

using adaptive laboratory evolution (Zampieri et al., 2017). By maximizing and 

minimizing flux through each reaction in the model and calculating the shadow prices, 

the authors could identify reactions, which, when maximized or minimized, resulted in 

shadow prices that were consistent with the observed patterns of metabolite 

concentration changes. Those reactions were hypothesized as being targets of evolution, 

whose flux should be increased in order to increase antibiotic resistance. 

Besides constraint-based modeling, the most common way to simulate cellular 

metabolism is with kinetic models. This involves the solution of the system of 

differential equations shown in Eq. 1 from given initial metabolite concentrations. As 

previously described, one of the challenges with this approach is the requirement of 

knowing the values of all the kinetic parameters of the system. For small biochemical 

systems, the kinetic parameters can sometimes be determined individually through in 



vitro experiments, but for genome-scale models this is not feasible. Additionally there is 

no guarantee that the in vitro kinetic parameters are representative of how an enzyme 

functions in vivo (Teusink et al., 2000). Instead of the bottom-up approach of 

experimentally determining each parameter, a top-down approach may be used, where 

the model parameters might initially be estimated from prior information, such as in 

vitro data, but are predominantly selected by fitting simulation results to genome-scale 

experimental data. This has long been done for small-scale networks, using 

metabolomics and MFA data (Jamshidi and Palsson, 2008; Srinivasan, Cluett and 

Mahadevan, 2015), however with continual increases in dataset sizes and computing 

power, it has also become feasible to do this for genome-scale networks. Recently a 

genome-scale kinetic model of E. coli was published along with estimated values for all 

kinetic parameters (Khodayari and Maranas, 2016). The model parameters were fitted 

using experimental flux data and model predictions were validated against 

metabolomics data. In addition the model could quantitatively predict product yields of 

24 different compound in 320 mutant strains, which was considerably better than the 

constraint-based simulation methods it was tested against. In another study kinetic 

models of human red blood cells were used to investigate individual variations in 

susceptibility to side effects of the hepatitis B drug Ribavirin (Bordbar et al., 2015). By 

measuring intracellular metabolite levels in red blood cells of 24 patients, they could 

determine individual kinetic parameter values for each of the patients, and show that 

those parameters were predictive of whether the patient was sensitive to side effects. 

Furthermore, the identified relationships between kinetic parameters and sensitivity to 

drug side-effect were consistent with known mechanisms of Ribavirin side effects. 

These results show that kinetic modeling frameworks have the potential to significantly 

outperform constraint-based simulations, and that with modern omics technologies and 

computer power, it is feasible to parametrize them sufficiently to predict metabolic 

behavior (Saa and Nielsen, 2017). 

5. Combining metabolic models and machine learning methods 

The term machine learning covers a broad range of methods where large datasets are 

used to infer relationships between variables or to predict various outcomes from given 

input data. Often this is done without much consideration of specific mechanisms of the 

studied phenomena. Such data-driven methods can of course be applied to metabolic 

data, but with limited connection to biological mechanisms, the results are often difficult 

to interpret. Instead, machine learning methods can be combined with domain-specific 

biological knowledge, such as the information encoded within a genome-scale 



reconstruction, to create hybrid methods that also take advantage of the metabolic 

network structure. 

Plaimas and coworkers predicted gene essentiality in E. coli using a hybrid method 

(Plaimas et al., 2008). Instead of using FBA to predict essentiality as described 

previously, they defined a set of features for each reaction, including metrics of network 

topology, gene expression data and predicted FBA fluxes. These features were fed into a 

support vector machine classifier together with labels from experimental essentiality 

data (Baba et al., 2006). The predictive accuracy of gene essentiality was 92%, 

compared to 85% for FBA. Furthermore, the genes where essentiality was not correctly 

predicted were retested experimentally, and in several cases the authors identified 

errors in the original experimental dataset. By removing single features from the input 

data one at a time, the authors could also identify which features were most important 

for accurately predicting essentiality. Prediction with FBA suffers mainly from two 

problems, namely that the metabolic network might be incomplete, and that the 

assumption of growth optimality does not always hold (O’Brien, Monk and Palsson, 

2015). A hybrid method can instead learn from data, utilizing the biological context, e.g. 

in the form of a metabolic network, only when it improves prediction performance. A 

similar method was recently used to predict drug side effects (Shaked et al., 2016). A list 

of drugs known to inactivate one or more enzymatic reactions was used as training data, 

with features corresponding to the minimum and maximum possible FBA flux for each 

reaction after deactivating the drug’s target reaction(s) in the Recon1 model. Support 

vector machine classifiers were then trained to predict which (if any) side effects the 

drug would have. Using a feature selection method it was also possible to find the 

features that were most strongly associated with a given side effect. Many of the results 

were found to be consistent with the published literature of these drug side effects. 

A third example of a combination of machine learning with metabolic network data was 

used to predict novel drug-reaction interactions for cancer therapy (Li et al., 2010). The 

method requires the construction of a reaction flux similarity matrix. This matrix was 

obtained using the GIMME algorithm to predict reaction fluxes from gene expression 

data in 59 cancer cell lines. Reactions with the same flux profile across the cell lines 

were said to have a high similarity, while reactions with different flux profiles had a low 

similarity. The reaction flux similarity matrix was combined with knowledge of existing 

drug-reaction interactions, using a K-nearest neighbors algorithm, to predict new 

interactions. 



Where purely model-based algorithms may suffer from lack of biological knowledge, the 

use of machine learning methods in biomedical research is often hampered by 

difficulties in interpreting the results. The examples above show that the two 

methodologies can be combined to achieve results that are informed by experimental 

data, while maintaining biologically relevant relationships between variables. Such 

hybrid methods can be used to build accurate predictive models, while also providing 

new biological insights and will without doubt find widespread use in the future. 
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