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Abstract

Genome-scale metabolic reconstructions have found widespread use in scientific
research as structured representations of knowledge about an organism’s
metabolism and as starting points for metabolic simulations. With few simplifying
assumptions, genome-scale models of metabolism can be used to estimate intra-
cellular reaction rates. However, with the rapid increase in the availability of
genome-scale data, there is ample opportunity to refine the predictions made by
metabolic models, by integrating experimental data. In this chapter, we review
different methods for combining genome-scale metabolic models with genome-
scale experimental data, such as transcriptomics, proteomics and metabolomics.
Integrating experimental data into the models generally results in more precise

and accurate simulations of cellular metabolism.

1. Reconstruction and analysis of metabolic networks

To describe and understand the functioning of living cells, it is essential to study
metabolism. The chemical conversion of nutrients into energy, biomass and secondary
products is one of the main components of the cellular phenotype, and a defining
characteristic of life. Since the metabolic capabilities of an organism are ultimately
determined by its genotype, advances in genome sequencing technologies during the
last two decades have had a substantial impact on our knowledge about metabolism.
With a fully annotated whole genome sequence of an organism, it is feasible to compile a
database of all the biochemical reactions that can be catalyzed inside the cell. Besides a
list of reactions and their stoichiometries, such a database, called a genome-scale
metabolic reconstruction, often includes information that links each reaction to the

genes encoding the enzymes that catalyze it (Price, Reed and Palsson, 2004). The



earliest published genome-scale reconstructions were for organisms with small
genomes such as Haemophilus influenzae (Schilling and Palsson, 2000) and Escherichia
coli (Edwards and Palsson, 2000), but reconstructions for more complex organisms
including Saccharomyces cerevisiae (Forster et al., 2003), Arabidopsis thaliana (de
Oliveira Dal'Molin et al., 2010) and Homo sapiens (Duarte et al., 2007) have followed
since. Revised versions of genome-scale metabolic reconstructions are sometimes
published when new genes are discovered or annotated functions of known genes are

updated.

A genome-scale metabolic reconstruction allows systematic analysis of the metabolic
network of an organism, and can even form a starting point for whole-cell simulations
(Orth, Thiele and Palsson, 2010; Karr et al., 2012). In order to perform such analyses, the
genome-scale reconstruction must be formulated as a mathematical mode], e.g. in the

form of a system of differential equations,
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Here S denotes the stoichiometric matrix, derived from the genome-scale reconstruction
with element s; denoting the stoichiometric coefficient of metabolite i in reaction j, and x
is a vector of concentrations of all metabolites in the cell. Reaction rates, v, are a function
of current metabolite concentrations and kinetic parameters, k. Given initial metabolite
concentrations, the system of differential equations is readily solved numerically. While
the formulation is conceptually simple, its use on the genome-scale has been impeded by

limited knowledge of the many kinetic parameters (McCloskey, Palsson and Feist, 2013).

To avoid the issue of unknown kinetic parameters, constraint-based metabolic
modeling methods are often used instead. Constraint-based modeling imposes
constraints on the system and finds metabolic reaction rates that are consistent with
these constraints. The most central constraint is the assumption of steady-state, where
the concentrations of internal metabolites are assumed to be constant. This corresponds
to setting the left-hand side of Equation 1 to zero and results in a system of linear

equations,
S'v=0 (2)

that can be solved for the reaction rates (also known as fluxes), v (Orth, Thiele and
Palsson, 2010). The kinetic parameters are not accounted for explicitly in constraint-
based models, which only require the stoichiometric matrix to be known. For most

genome-scale reconstructions, the system of equations is underdetermined, meaning



that an infinite number of flux solutions exist. One way to address this issue is to identify
a solution that optimizes a specific objective. This is based on an assumption that the
cell has evolved to maximize some biological objective, e.g. production of ATP or
production of biomass. Production of biomass is modeled through a bulk-reaction that
consumes biomass constituents such as nucleotides and amino acids in empirically
determined ratios (Orth, Thiele and Palsson, 2010). This method is known as flux
balance analysis (FBA) and has become the foundation of most work in constraint-
based metabolic modeling. Performing flux balance analysis requires the solution of a
linear optimization problem. The result is a set of reaction rates that satisfy the

constraints of the system and is consistent with the defined biological objective.

Despite the simple formulation and strong assumptions, FBA has proven useful in a
number of metabolic modeling applications, to predict the rates of metabolic reactions,
typically called the flux distribution (McCloskey, Palsson and Feist, 2013). It can been
used for instance to predict essential metabolic genes, i.e. genes that are required for the
synthesis of one or more biomass constituents. This is done by simply removing
corresponding reactions from the model and performing FBA. If the maximal biomass
flux is zero in the knockout model, the gene is expected to be essential. Comparisons
with experimental data from single-knockout studies have shown good correspondence
with the results of FBA-based essentiality predictions in E. coli and other bacteria such
as Pseudomonas aeruginosa (Edwards and Palsson, 2000; Oberhardt et al, 2008). In
other organisms, e.g. S. cerevisiae, predictions of essentiality are less accurate, and for
multiple knockouts in particular, there is only a very low correlation between

experimental data and FBA predictions (Heavner and Price, 2015).

The assumption of maximization of biomass production as a metabolic objective is often
reasonable for microorganisms during exponential growth, but it will clearly not hold
for most mammalian cells or other multicellular organisms whose evolutionary
pressure has selected for far more complex traits than simply growth at the cellular
level. In place of FBA, Markov chain Monte Carlo (MCMC) methods can be used to
uniformly sample the feasible steady-state flux space described by Equation 2. MCMC
methods provide an estimate of the joint probability distribution of fluxes and do not
depend on a pre-specified biological objective. The applications of random sampling
methods include the analysis of red blood cells under storage conditions (Bordbar et al.,
2016), aspirin resistance in platelets (Thomas et al, 2015), transcriptional regulation in
human adipocytes (Mardinoglu et al., 2014) and in bacterial communities in the human

gut (Shoaie et al, 2013), as well as the metabolic re-wiring that takes place in epithelial



to mesenchymal transition during the development of breast cancer (Halldorsson et al.,

2017).

2. Constraining metabolic models with transcriptomics and

proteomics data

Although mass balance is an essential principle, metabolism is constrained by other
factors and physical principles as well. FBA assumes that the cell can use all metabolic
reactions at a given time in the combination that gives the highest biomass production,
however, this is contradicted by the fact that only a proportion of an organism’s genes
will be transcriptionally active at the same time. Thus further constraints can be
imposed on the model by leveraging information about the transcriptional state of the
cell. This can be used to create context-specific models from generic models, such as the
generic human reconstruction Recon1 (Duarte et al., 2007), as well as to improve the
accuracy of flux predictions. The simplest realization of this idea utilizes the fact that an
enzyme cannot catalyze any reaction flux if its encoding gene is not expressed. Reactions
catalyzed by genes with transcript levels below a defined threshold can thus be forced to
be inactive by removing them from the model. Flux distributions obtained with such a
constrained model were found to be more strongly correlated to experimentally
measured fluxes in S. cerevisiae compared to an unconstrained model (Akesson, Forster
and Nielsen, 2004). More sophisticated algorithms minimize the difference between the
predicted flux distribution and the gene expression data. The Gene Inactivity Moderated
by Metabolism and Expression (GIMME) algorithm (Becker and Palsson, 2008) finds flux
values which minimize the utilization of reactions with low expression levels, in order to
meet pre-specified metabolic requirements such as growth. The iMAT method
developed by Shlomi and coworkers (Shlomi et al., 2008) alleviates the need for a pre-
specified cellular objective and is therefore suitable for analyzing mammalian cells and
tissues. The method partitions gene expression values into three groups, corresponding
to high, moderate and low expression and then maximizes the number of reactions with
flux levels in agreement with the expression states. This enabled identification of tissue-
specific metabolic activities in different human tissues, and the construction of tissue-
specific models of human metabolism. An extension of iMAT was used to construct a
model of cancer metabolism from Recon1 and expression data from cancer cell lines in
the NCI-60 collection. The cancer model was then used to identify several cytostatic
drug targets, and generate a list of potential selective anti-cancer treatments (Folger et

al,2011).



Since Akesson and coworkers first used gene-expression data to constrain metabolic
models, a large number of methods that integrate expression data and flux predictions
have been published. An evaluation of many of these methods, by their ability to predict
flux distributions in E. coli and S. cerevisiae, showed that none of them performed
significantly better than parsimonious FBA, an extension of FBA that finds the flux
distribution with the smallest sum of fluxes that can support the optimal objective value
(Machado and Herrgard, 2014). This suggests that gene transcription levels do not
correlate strongly with reaction fluxes, at least in microbial cells, which is not surprising
considering that translational efficiency, post-translational modifications and allosteric

regulation all have an effect on fluxes as well.

A step closer to the actual reactions than mRNA abundance is protein concentration. A
certain correlation between mRNA and protein concentration is to be expected (Gry et
al, 2009), and several methods for integrating gene expression data into metabolic
models can indeed use protein abundance data with the same algorithms, simply by
replacing gene expression thresholds with protein abundance thresholds (Becker and
Palsson, 2008; Machado and Herrgard, 2014). However, there have also been attempts
to more explicitly incorporate proteomics data into the modeling frameworks. A central
component of enzyme kinetics is the concept of the catalytic capacity of an enzyme. Each
enzyme molecule can only perform a certain number of conversions per second; an
increased flux will therefore require a larger number of enzymes at some point. The
maximum possible flux, represented by the V. parameter, can be calculated from the

enzyme concentration and catalytic turnover number, Kkca:

Vinax = keat " [E] 3)

If the catalytic turnover parameters are known, this relationship can be used to
constrain fluxes using protein concentration data. In the GECKO modeling framework
(Sanchez et al.,, 2017) a constraint is added for each enzyme, representing the enzyme’s
degree of utilization, where the upper bound is set to the measured enzyme
concentration. The utilization of an enzyme is obtained by summing v/k.,; for all
reactions catalyzed by that enzyme. Using GECKO with a proteomics dataset for S.
cerevisiae, Sanchez and coworkers showed that the space of possible fluxes was reduced
considerably by excluding all flux distributions that were not consistent with the
observed enzyme levels. On the other hand, the fluxes predicted for S. cerevisiae grown
in glucose limited minimal medium, did not have a significantly smaller error, compared
to experimentally measured fluxes, than those predicted with FBA. It is possible

however, that the advantage of using proteomics data will be larger in cases where the



assumption of maximal growth is not valid, e.g. under stress conditions or in genetically
perturbed strains. GECKO can also be used in the absence of proteomics data by
imposing a single overall constraint on the total enzyme mass. This resulted in more
accurate predictions of maximal growth rates on a wide range of different carbon
sources, for which FBA tends to overestimate growth rate. Another interesting growth
effect that was captured by including an overall protein constraint is the shift from
respiration to fermentation at high growth rates. This overflow metabolism, also known
as the Crabtree effect in yeast (Crabtree, 1929) and the Warburg effect in cancer cells
(Warburg, Wind and Negelein, 1927), cannot be captured by FBA, where simply the flux
distribution with the highest biomass yield is found, independently of growth rate. The
overflow effect is most likely caused by respiratory enzymes having a higher proteome
cost than fermentative enzymes (Basan et al., 2015), which means that at high growth
rates protein allocation becomes limiting and fermentation becomes more efficient even
though it has a lower energy/carbon yield. Overflow metabolism has been modeled e.g.
in E. coli (Basan et al., 2015), S. cerevisiae (Sanchez et al., 2017) and cancer cells (Shlomi
et al, 2011), by different models with the common trait of somehow constraining the

proteome.

The causes of the Warburg effect in cancer cells were studied using Recon1 by placing a
constraint on total enzyme concentration to account for enzyme solvent capacity
(Shlomi et al, 2011). To compute the contribution of each enzyme to the total
concentration, an estimate of the enzyme turnover number was required. Estimates for
15% of the reactions could be obtained from biochemical databases, the rest was
assigned a fixed value of 25/s. Using FBA and random sampling, the Warburg effect was
shown to be a consequence of metabolic adaptations to increase biomass productivity.
Further analysis revealed the preference of cancer cells to take up glutamine instead of

other amino acids.

Resource allocation between cellular processes in Bacillus subtilis was recently analyzed
using a method that incorporates genome-wide protein quantification data and
extracellular nutrient concentrations with a metabolic reconstruction (Goelzer et al.,
2015). The method, Resource Balance Analysis (RBA), links flux to enzyme abundance,
assuming a relationship similar to Equation 3, while incorporating information on
protein activity and protein localization. The use of RBA is fairly involved compared to
the methods described earlier and requires specification of a large number of
parameters. The parameters were partly obtained from Uniprot and partly inferred

from data. RBA accurately predicted the allocation of resources in B. subtilis over a wide



range of conditions. In vivo knockouts of enzymes which were expressed but predicted
to have zero flux in the model resulted in significantly increased growth (Goelzer et al.,
2015). This suggests that the method may be useful for constructing minimal cell

factories, e.g. for protein production.

3. Models of metabolism and macromolecular expression

The previously described methods for combining omics data and metabolic models are
mostly based on heuristically formulated constraints and/or objectives. When the
measured quantities - such as mRNA and protein abundances - are not explicitly
accounted for in the modeling framework, they cannot be seamlessly integrated into it.
To address this problem, an extended modeling framework that explicitly models the
expression of macromolecules, such as RNA and protein, has been developed.
Construction of such models of metabolism and expression (ME-models) began with
the reconstruction of the macromolecular expression network of E. coli, analogously to
the metabolic network (Thiele et al., 2009). Transcription of a given gene to produce
mRNA is modeled as a reaction consuming nucleotides in proportions consistent with
the specific sequence, and similarly translation is modeled as a reaction consuming
charged tRNAs while producing protein and uncharged tRNAs. In order to model how
metabolic catalysis is dependent on translation of a specific protein and how translation
of a protein is dependent on transcription of its gene to mRNA, these different reactions
must be coupled (Thiele et al, 2009; Lerman et al., 2012). A certain quantity of an
enzyme can only catalyze a limited reaction flux and Equation 3 can be rearranged to

enable calculation of the minimum amount of enzyme required to catalyze a given flux

v
[E] >
kcat

(4)

Equation 4 represents a constraint that can be used to couple metabolic reactions to the
enzymes that catalyze them. Identical constraints can be formulated for ribosomes and
mRNA in translation reactions and for RNA-polymerase in transcription reactions. A
constraint-based modeling framework, however, does not model concentrations of
metabolites (or enzymes) and is thus not directly compatible with such constraints. To
circumvent this it is necessary to account for growth-related dilution. In a growing cell,
metabolite pools are continuously diluted, because of the expanding intracellular
volume, by a rate equal to the product of the growth rate and metabolite concentration.
This means that in steady-state, catalysis of a reaction requires that the catalyzing
enzyme be produced at a rate proportional to the growth rate. Enzymatic conversion of

compound A into compound B by enzyme E thus becomes (Lloyd et al., 2017):
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In FBA the requirement of enzyme production is modeled through the composition of
the biomass reaction, but since this reaction is determined a priori, FBA cannot model
how biomass composition changes under different growth rates and conditions. With
ME-models the empirical biomass reaction is replaced by explicitly modeling the
relationship between metabolism and macromolecular expression. ME-models can thus
directly predict the expression levels of different proteins, which can be compared with
-omics datasets. A ME-model of the thermophilic bacterium Thermotoga maritima
(Lerman et al, 2012), found moderate correlations between predicted and
experimentally measured mRNA profiles (r= 0.54), protein expression profiles (r =
0.57), as well as proteome amino acid composition (r = 0.79). A ME-model of E. coli
showed improved prediction of growth rates in different nutrient conditions compared
to FBA (Thiele et al.,, 2012), and could accurately predict several internal fluxes (O’Brien
et al, 2013). Additionally, since ME-models explicitly include the cost of producing the
enzymes required for various pathways, they implicitly limit the total proteome size and
thus also capture metabolic overflow effects, such as the acetate overflow metabolism in

E. coli (O’'Brien et al, 2013).

Whereas traditional constraint-based metabolic models include, and can thus directly
predict, growth rate, uptake and secretion rates and internal fluxes, ME-models can
additionally predict expression profiles and proteome composition, and thus they can
also be directly constrained by expression and proteomics data. Because of this, ME-
models represent an intuitive and theoretically justified method of integrating
transcriptomics and proteomics data into metabolic models. They have not yet found
broad usage in the metabolic modeling community, presumably because of the time it
takes to run simulations (several orders of magnitude higher than with FBA), and the
lack of related model and software infrastructure, but these issues are continuously

being addressed (Yang et al,, 2016; Lloyd et al., 2017).

4. Augmenting models with metabolomics data

In a discussion of data integration in metabolic models, it is impossible not to mention
metabolomics. Different analytical methods, e.g. enzymatic assays, chromatography and
mass spectrometry, can be used to take snapshots of the cellular metabolism with
varying resolution, coverage, precision and throughput. However, they all provide useful
information about the concentrations of metabolite pools in the cell. One of the earliest

uses of metabolomics data to improve metabolic modeling was metabolic flux analysis



(MFA), which utilizes time-course metabolite concentration data from cultures fed with
isotopically labeled substrates to infer flux values in the metabolic network
(Stephanopoulos, 1999; Sauer, 2006). This is done by monitoring how the isotopes, e.g.
13C or 15N, spread to downstream metabolite pools over time. The advantage of this
method is that the resulting fluxes can be used directly to constrain metabolic models or
to compare the validity of different simulation methods. However, MFA is labor- and
cost intensive and works best on a smaller subset of the entire metabolic network,
typically just the central carbon metabolism (Antoniewicz, 2015; Gopalakrishnan and

Maranas, 2015).

Changes in extracellular metabolite concentrations over time can be used to estimate
uptake and secretion rates and constrain the flux space. However, since constraint-
based modeling frameworks model fluxes under an assumption of steady-state, internal
metabolite concentration data at a single time point without isotopic labeling cannot be
directly utilized. Despite this, metabolomics data can still be used to either constrain the
models or to provide new insights in combination with the simulation results. In order
to model cells that are not in steady-state, such as human blood cells undergoing
physiological changes during storage, Bordbar and coworkers devised a method called
unsteady-state FBA (Bordbar et al, 2017). Using time-course metabolomics they
determined the rate of accumulation or depletion for internal metabolites, which was
then modeled by adding source and sink reactions to the metabolic model. These
reactions were then constrained to have fluxes corresponding to the experimentally
determined rates of concentration changes. Subsequent MFA revealed that the fluxes

predicted with this method were more accurate than those obtained by regular FBA.

Aside from enforcing steady state, a commonly used constraint in constraint-based
models is to force certain fluxes to only go in one direction. This is straightforward for
some reactions whose thermodynamics make it practically irreversible under biological
conditions. Other reactions are closer to equilibrium and can go in both directions
depending on specific conditions. The spontaneous direction of a reaction can be

calculated by the formula
A.G = A.G° + RT log(Q) (6)

If the left-hand side (the reaction Gibbs free energy) is negative, the reaction will
proceed spontaneously in the forward direction, while it will proceed spontaneously in
the reverse direction if the reaction Gibbs free energy is positive. A.G° is the reaction
Gibbs free energy under standard conditions, RT is the gas constant times the absolute

temperature and Q is the reaction quotient, containing the concentrations of the



reaction products and substrates. The standard Gibbs free energy must in principle be
determined experimentally, but in most cases it can be calculated from the structure of
the participating metabolites and already known reaction Gibbs free energies for other
reactions (Noor et al., 2013). This means that a dataset of metabolite concentrations can
be used to constrain reactions to a specific direction depending on the specific metabolic
conditions, reducing the space of feasible fluxes significantly (Soh and Hatzimanikatis,
2014). In many simulated growth conditions, it can be sufficient simply to constrain
reaction directionalities according to the most common mode of operation without
regard to actual metabolite concentrations. Some reactions however, occur in the
unconventional direction under extreme conditions, such as very high CO,
concentrations. In such cases using thermodynamics and metabolite data to inform
reaction directionalities will be particularly beneficial and can lead to more accurate

simulations (Soh, Miskovic and Hatzimanikatis, 2012).

Constraint-based simulations can also be combined with metabolomics data in another
way. In addition to calculating a flux distribution, simulating a constraint-based model
also provides so-called shadow prices. Each shadow price is linked to a metabolite and
reflects how much the objective function, e.g. growth, could be improved if the model
were allowed to get some of that metabolite “for free”. In other words a shadow price is
a measure of how limiting a given metabolite’s mass balance is for the objective
function. Depending on the algorithm used to solve the FBA problem, shadow prices are
either a byproduct of the solution process or can be obtained with modest

computational effort.

Zampieri and coworkers investigated the evolution of antibiotic resistance in E. coli
using adaptive laboratory evolution (Zampieri et al,, 2017). By maximizing and
minimizing flux through each reaction in the model and calculating the shadow prices,
the authors could identify reactions, which, when maximized or minimized, resulted in
shadow prices that were consistent with the observed patterns of metabolite
concentration changes. Those reactions were hypothesized as being targets of evolution,

whose flux should be increased in order to increase antibiotic resistance.

Besides constraint-based modeling, the most common way to simulate cellular
metabolism is with kinetic models. This involves the solution of the system of
differential equations shown in Eq. 1 from given initial metabolite concentrations. As
previously described, one of the challenges with this approach is the requirement of
knowing the values of all the kinetic parameters of the system. For small biochemical

systems, the kinetic parameters can sometimes be determined individually through in



vitro experiments, but for genome-scale models this is not feasible. Additionally there is
no guarantee that the in vitro kinetic parameters are representative of how an enzyme
functions in vivo (Teusink et al., 2000). Instead of the bottom-up approach of
experimentally determining each parameter, a top-down approach may be used, where
the model parameters might initially be estimated from prior information, such as in
vitro data, but are predominantly selected by fitting simulation results to genome-scale
experimental data. This has long been done for small-scale networks, using
metabolomics and MFA data (Jamshidi and Palsson, 2008; Srinivasan, Cluett and
Mahadevan, 2015), however with continual increases in dataset sizes and computing
power, it has also become feasible to do this for genome-scale networks. Recently a
genome-scale kinetic model of E. coli was published along with estimated values for all
kinetic parameters (Khodayari and Maranas, 2016). The model parameters were fitted
using experimental flux data and model predictions were validated against
metabolomics data. In addition the model could quantitatively predict product yields of
24 different compound in 320 mutant strains, which was considerably better than the
constraint-based simulation methods it was tested against. In another study kinetic
models of human red blood cells were used to investigate individual variations in
susceptibility to side effects of the hepatitis B drug Ribavirin (Bordbar et al.,, 2015). By
measuring intracellular metabolite levels in red blood cells of 24 patients, they could
determine individual kinetic parameter values for each of the patients, and show that
those parameters were predictive of whether the patient was sensitive to side effects.
Furthermore, the identified relationships between kinetic parameters and sensitivity to
drug side-effect were consistent with known mechanisms of Ribavirin side effects.
These results show that kinetic modeling frameworks have the potential to significantly
outperform constraint-based simulations, and that with modern omics technologies and
computer power, it is feasible to parametrize them sufficiently to predict metabolic

behavior (Saa and Nielsen, 2017).

5. Combining metabolic models and machine learning methods

The term machine learning covers a broad range of methods where large datasets are
used to infer relationships between variables or to predict various outcomes from given
input data. Often this is done without much consideration of specific mechanisms of the
studied phenomena. Such data-driven methods can of course be applied to metabolic
data, but with limited connection to biological mechanisms, the results are often difficult
to interpret. Instead, machine learning methods can be combined with domain-specific

biological knowledge, such as the information encoded within a genome-scale



reconstruction, to create hybrid methods that also take advantage of the metabolic

network structure.

Plaimas and coworkers predicted gene essentiality in E. coli using a hybrid method
(Plaimas et al.,, 2008). Instead of using FBA to predict essentiality as described
previously, they defined a set of features for each reaction, including metrics of network
topology, gene expression data and predicted FBA fluxes. These features were fed into a
support vector machine classifier together with labels from experimental essentiality
data (Baba et al,, 2006). The predictive accuracy of gene essentiality was 92%,
compared to 85% for FBA. Furthermore, the genes where essentiality was not correctly
predicted were retested experimentally, and in several cases the authors identified
errors in the original experimental dataset. By removing single features from the input
data one at a time, the authors could also identify which features were most important
for accurately predicting essentiality. Prediction with FBA suffers mainly from two
problems, namely that the metabolic network might be incomplete, and that the
assumption of growth optimality does not always hold (O’Brien, Monk and Palsson,
2015). A hybrid method can instead learn from data, utilizing the biological context, e.g.
in the form of a metabolic network, only when it improves prediction performance. A
similar method was recently used to predict drug side effects (Shaked et al., 2016). A list
of drugs known to inactivate one or more enzymatic reactions was used as training data,
with features corresponding to the minimum and maximum possible FBA flux for each
reaction after deactivating the drug’s target reaction(s) in the Recon1 model. Support
vector machine classifiers were then trained to predict which (if any) side effects the
drug would have. Using a feature selection method it was also possible to find the
features that were most strongly associated with a given side effect. Many of the results

were found to be consistent with the published literature of these drug side effects.

A third example of a combination of machine learning with metabolic network data was
used to predict novel drug-reaction interactions for cancer therapy (Li et al,, 2010). The
method requires the construction of a reaction flux similarity matrix. This matrix was
obtained using the GIMME algorithm to predict reaction fluxes from gene expression
data in 59 cancer cell lines. Reactions with the same flux profile across the cell lines
were said to have a high similarity, while reactions with different flux profiles had a low
similarity. The reaction flux similarity matrix was combined with knowledge of existing
drug-reaction interactions, using a K-nearest neighbors algorithm, to predict new

interactions.



Where purely model-based algorithms may suffer from lack of biological knowledge, the
use of machine learning methods in biomedical research is often hampered by
difficulties in interpreting the results. The examples above show that the two
methodologies can be combined to achieve results that are informed by experimental
data, while maintaining biologically relevant relationships between variables. Such
hybrid methods can be used to build accurate predictive models, while also providing

new biological insights and will without doubt find widespread use in the future.

References

Akesson, M., Forster, J. and Nielsen, J. (2004) ‘Integration of gene expression data into
genome-scale metabolic models’, Metabolic Engineering, 6(4), pp. 285-293. doi:
10.1016/j.ymben.2003.12.002.

Antoniewicz, M. R. (2015) ‘Methods and advances in metabolic flux analysis: a mini-
review’, Journal of Industrial Microbiology and Biotechnology, 42(3), pp. 317-325. doi:
10.1007/s10295-015-1585-x.

Baba, T. et al. (2006) ‘Construction of Escherichia coli K-12 in-frame, single-gene
knockout mutants: the Keio collection’, Molecular Systems Biology, 2. doi:

10.1038/msb4100050.

Basan, M. et al. (2015) ‘Overflow metabolism in Escherichia coli results from efficient

proteome allocation’, Nature, 528(7580), pp. 99-104. doi: 10.1038/nature15765.

Becker, S. a. and Palsson, B. 0. (2008) ‘Context-specific metabolic networks are
consistent with experiments’, PLoS Computational Biology, 4(5). doi:

10.1371/journal.pcbi.1000082.

Bordbar, A. et al. (2015) ‘Personalized Whole-Cell Kinetic Models of Metabolism for
Discovery in Genomics and Pharmacodynamics’, Cell Systems. Elsevier Inc., 1(4), pp.

283-292.doi: 10.1016/j.cels.2015.10.003.

Bordbar, A. et al. (2016) ‘Identified metabolic signature for assessing red blood cell unit
quality is associated with endothelial damage markers and clinical outcomes’,

Transfusion, 56(4), pp. 852-862. doi: 10.1111/trf.13460.

Bordbar, A. et al. (2017) ‘Elucidating dynamic metabolic physiology through network
integration of quantitative time-course metabolomics’, Scientific Reports. Nature

Publishing Group, 7(December 2016), p. 46249. doi: 10.1038/srep46249.

Crabtree, H. G. (1929) ‘Observations on the carbohydrate metabolism of tumours’, The



Biochemical journal, 23(3), pp- 536-45. doi: 10.1042/bj0230536.

Duarte, N. C. et al. (2007) ‘Global reconstruction of the human metabolic network based
on genomic and bibliomic data’, Proceedings of the National Academy of Sciences, 104(6),

pp. 1777-1782. doi: 10.1073/pnas.0610772104.

Edwards, J. S. and Palsson, B. O. (2000) ‘The Escherichia coli MG1655 in silico metabolic
genotype: Its definition, characteristics, and capabilities’, Proceedings of the National

Academy of Sciences, 97(10), pp. 5528-5533. doi: 10.1073 /pnas.97.10.5528.

Folger, O. et al. (2011) ‘Predicting selective drug targets in cancer through metabolic
networks’, Molecular Systems Biology. Nature Publishing Group, 7(1), pp. 527-527. doi:
10.1038/msb.2011.63.

Forster, |. et al. (2003) ‘Large-scale evaluation of in silico gene deletions in
Saccharomyces cerevisiae.’, Omics : a journal of integrative biology, 7(2), pp. 193-202.

doi: 10.1089/153623103322246584.

Goelzer, A. et al. (2015) ‘Quantitative prediction of genome-wide resource allocation in
bacteria’, Metabolic Engineering. Elsevier, 32, pp. 232-243. doi:
10.1016/j.ymben.2015.10.003.

Gopalakrishnan, S. and Maranas, C. D. (2015) “13C metabolic flux analysis at a genome-
scale’, Metabolic Engineering. Elsevier, 32, pp. 12-22. doi:
10.1016/j.ymben.2015.08.006.

Gry, M. et al. (2009) ‘Correlations between RNA and protein expression profiles in 23
human cell lines’, BMC Genomics, 10(1), p. 365. doi: 10.1186/1471-2164-10-365.

Halldorsson, S. et al. (2017) ‘Metabolic re-wiring of isogenic breast epithelial cell lines
following epithelial to mesenchymal transition’, Cancer Letters, 396, pp. 117-129. doi:
10.1016/j.canlet.2017.03.019.

Heavner, B. D. and Price, N. D. (2015) ‘Comparative Analysis of Yeast Metabolic Network
Models Highlights Progress, Opportunities for Metabolic Reconstruction’, PLoS
Computational Biology, 11(11), pp- 1-26. doi: 10.1371/journal.pcbi.1004530.

Jamshidi, N. and Palsson, B. . (2008) ‘Formulating genome-scale kinetic models in the

post-genome era.’, Molecular systems biology, 4(171), p. 171. doi: 10.1038/msb.2008.8.

Karr, J. R. et al. (2012) ‘A whole-cell computational model predicts phenotype from
genotype’, Cell, 150(2), pp. 389-401. doi: 10.1016/j.cell.2012.05.044.

Khodayari, A. and Maranas, C. D. (2016) ‘A genome-scale Escherichia coli kinetic



metabolic model k-ecoli457 satisfying flux data for multiple mutant strains’, Nature

Communications, p. 13806. doi: 10.1038 /ncomms13806.

Lerman, J. A. et al. (2012) ‘In silico method for modelling metabolism and gene product
expression at genome scale’, Nature Communications. Nature Publishing Group, 3(May),

p. 929. doi: 10.1038/ncomms1928.

Li, L. et al. (2010) ‘Predicting enzyme targets for cancer drugs by profiling human
metabolic reactions in NCI-60 cell lines.’, BMC bioinformatics, 11(1), p. 501. doi:
10.1186/1471-2105-11-501.

Lloyd, C.]. etal. (2017) ‘COBRAme: A Computational Framework for Building and
Manipulating Models of Metabolism and Gene Expression’, bioRxiv, p. 106559. doi:
http://dx.doi.org/10.1101/106559.

Machado, D. and Herrgard, M. (2014) ‘Systematic Evaluation of Methods for Integration
of Transcriptomic Data into Constraint-Based Models of Metabolism’, PLoS

Computational Biology, 10(4). doi: 10.1371/journal.pcbi.1003580.

Mardinoglu, A. et al. (2014) ‘Integration of clinical data with a genome-scale metabolic
model of the human adipocyte’, Molecular Systems Biology. Nature Publishing Group,
9(1), pp. 649-649. doi: 10.1038/msb.2013.5.

McCloskey, D., Palsson, B. @. and Feist, A. M. (2013) ‘Basic and applied uses of genome-
scale metabolic network reconstructions of Escherichia coli.’, Molecular systems biology,

9(1), p. 661. doi: 10.1038/msb.2013.18.

Noor, E. et al. (2013) ‘Consistent Estimation of Gibbs Energy Using Component
Contributions’, PLoS Computational Biology, 9(7). doi: 10.1371 /journal.pcbi.1003098.

O’Brien, E. ]. et al. (2013) ‘Genome-scale models of metabolism and gene expression
extend and refine growth phenotype prediction’, Molecular Systems Biology, 9(1), pp.
693-693. doi: 10.1038/msb.2013.52.

O’Brien, E. ], Monk, ]. M. and Palsson, B. 0. (2015) ‘Using genome-scale models to predict
biological capabilities’, Cell. Elsevier Inc., 161(5), pp. 971-987. doi:
10.1016/j.cell.2015.05.019.

Oberhardt, M. A. et al. (2008) ‘Genome-scale metabolic network analysis of the
opportunistic pathogen Pseudomonas aeruginosa PAO1’, Journal of Bacteriology, 190(8),

pp. 2790-2803. doi: 10.1128/]B.01583-07.

de Oliveira Dal’'Molin, C. G. et al. (2010) ‘AraGEM, a Genome-Scale Reconstruction of the
Primary Metabolic Network in Arabidopsis’, Plant Physiology, 152(2), pp. 579-589. doi:



10.1104/pp.109.148817.

Orth, J. D., Thiele, I. and Palsson, B. @. (2010) ‘What is flux balance analysis?’, Nature
biotechnology. Nature Publishing Group, 28(3), pp. 245-248. doi: 10.1038/nbt.1614.

Plaimas, K. et al. (2008) ‘Machine learning based analyses on metabolic networks
supports high-throughput knockout screens’, BMC Systems Biology, 2(1), p. 67. doi:
10.1186/1752-0509-2-67.

Price, N. D,, Reed, J. L. and Palsson, B. @. (2004) ‘Genome-scale models of microbial cells:
evaluating the consequences of constraints’, Nature Reviews Microbiology, 2(11), pp.

886-897. doi: 10.1038 /nrmicro1023.

Saa, P. A. and Nielsen, L. K. (2017) ‘Formulation, construction and analysis of kinetic
models of metabolism: A review of modelling frameworks’, Biotechnology Advances.

Elsevier, (March), pp. 0-1. doi: 10.1016/j.biotechadv.2017.09.005.

Sanchez, B.]. et al. (2017) ‘Improving the phenotype predictions of a yeast genome-scale
metabolic model by incorporating enzymatic constraints’, Molecular Systems Biology,

13(8), p. 935. doi: 10.15252/msb.20167411.

Sauer, U. (2006) ‘Metabolic networks in motion: 13C-based flux analysis’, Molecular

Systems Biology, 2, pp- 1-10. doi: 10.1038/msb4100109.

Schilling, C. H. and Palsson, B. @. (2000) ‘Assessment of the Metabolic Capabilities of
Haemophilus influenzae Rd through a Genome-scale Pathway Analysis’, Journal of

Theoretical Biology, 203(3), pp. 249-283. doi: 10.1006/jtbi.2000.1088.

Shaked, I. et al. (2016) ‘Metabolic Network Prediction of Drug Side Effects’, Cell Systems.
Elsevier Inc., 2(3), pp. 209-213. doi: 10.1016/j.cels.2016.03.001.

Shlomi, T. et al. (2008) ‘Network-based prediction of human tissue-specific metabolism’,

Nature Biotechnology, 26(9), pp- 1003-1010. doi: 10.1038/nbt.1487.

Shlomi, T. et al. (2011) ‘Genome-scale metabolic modeling elucidates the role of
proliferative adaptation in causing the warburg effect’, PLoS Computational Biology,

7(3), pp- 1-8. doi: 10.1371 /journal.pcbi.1002018.

Shoaie, S. et al. (2013) ‘Understanding the interactions between bacteria in the human
gut through metabolic modeling’, Scientific Reports, 3(1), p. 2532. doi:
10.1038/srep02532.

Soh, K. C. and Hatzimanikatis, V. (2014) ‘Constraining the Flux Space Using

Thermodynamics and Integration of Metabolomics Data’, in Kromer, J. O., Nielsen, L. K.,



and Blank, L. M. (eds) Metabolic Flux Analysis: Methods and Protocols. New York, NY:
Springer New York, pp. 49-63. doi: 10.1007/978-1-4939-1170-7_3.

Soh, K. C,, Miskovic, L. and Hatzimanikatis, V. (2012) ‘From network models to network
responses: Integration of thermodynamic and kinetic properties of yeast genome-scale
metabolic networks’, FEMS Yeast Research, 12(2), pp. 129-143. doi: 10.1111/j.1567-
1364.2011.00771.x.

Srinivasan, S., Cluett, W. R. and Mahadevan, R. (2015) ‘Constructing kinetic models of
metabolism at genome-scales: A review’, Biotechnology Journal, 10(9), pp. 1345-1359.
doi: 10.1002/biot.201400522.

Stephanopoulos, G. (1999) ‘Metabolic Fluxes and Metabolic Engineering’, Metabolic
Engineering, 1(1), pp- 1-11.doi: 10.1006/mben.1998.0101.

Teusink, B. et al. (2000) ‘Can yeast glycolysis be understood terms of vitro kinetics of the
constituent enzymes? Testing biochemistry’, European Journal of Biochemistry, 267(17),

pp. 5313-5329. doi: 10.1046/j.1432-1327.2000.01527 x.

Thiele, L. et al. (2009) ‘Genome-scale reconstruction of escherichia coli’s transcriptional
and translational machinery: A knowledge base, its mathematical formulation, and its
functional characterization’, PLoS Computational Biology, 5(3). doi:

10.1371/journal.pcbi.1000312.

Thiele, L. et al. (2012) ‘Multiscale Modeling of Metabolism and Macromolecular Synthesis
in E. coli and Its Application to the Evolution of Codon Usage’, PLoS ONE, 7(9). doi:
10.1371/journal.pone.0045635.

Thomas, A. et al. (2015) ‘Network reconstruction of platelet metabolism identifies
metabolic signature for aspirin resistance’, Scientific Reports, 4(1), p. 3925. doi:

10.1038/srep03925.

Warburg, 0., Wind, F. and Negelein, E. (1927) ‘The metabolism of tumors in the body’,
The Journal of General Physiology, 8(6), pp- 519-530. doi: 10.1085/jgp.8.6.519.

Yang, L. et al. (2016) ‘solveME: fast and reliable solution of nonlinear ME models’, BMC
Bioinformatics. BMC Bioinformatics, 17(1), p. 391. doi: 10.1186/s12859-016-1240-1.

Zampieri, M. et al. (2017) ‘Metabolic constraints on the evolution of antibiotic

resistance’, Molecular Systems Biology, 13(3), p. 917.doi: 10.15252/msb.20167028.



